

#### REPORT

# National Instrument 43-101 Technical Report for the Wawa Gold Project

Report Effective Date: June 21, 2023 Resource Effective Date: May 31, 2019

Submitted to:

#### **Red Pine Exploration Inc.**

145 Wellington St. W., Suite 1001, Toronto, Ontario, Canada M5J 1H8

Submitted by: WSP CANADA INC. as Report Assembler of the work prepared by or under the supervision of the Qualified Person Named as Author: Brian Thomas, P.Geo., WSP Canada Inc. James McDonald, P.Geo., WSP Canada Inc. Steve Haggarty, P.Eng., Haggarty Technical Services

22553383.001-000-R-Rev0

June 21, 2023

## **NOTICE TO READERS**

This National Instrument 43-101 Technical Report for the Wawa Gold Project (the Project) was prepared and executed by Brian Thomas, P.Geo. (the Author), and James McDonald, P.Geo. (Author), of WSP Canada Inc. (WSP) and Steve Haggarty, P.Eng. (Author), of Haggarty Technical Services. This Report contains the expressions of professional opinions of the Authors based on (i) information available at the time of preparation, (ii) data supplied by Red Pine Exploration Inc. (Red Pine), and (iii) the assumptions, conditions, and qualifications set forth in this Report. The quality of information, conclusions, and estimates contained herein are consistent with the stated levels of accuracy as well as the circumstances and constraints under which the mandate was performed. This Report was prepared in accordance with a contract between WSP and Red Pine, which permits Red Pine to file this Report as a Technical Report with Canadian securities regulators pursuant to *National Instrument 43-101 - Standards of Disclosure for Mineral Projects*. Except for the purposes legislated under Canadian securities law, any use of this Report by any third party is at that party's sole risk.

# DATE AND SIGNATURE PAGE

This Technical Report on the Wawa Gold Project is submitted to Red Pine Exploration Inc. and is effective as of June 21, 2023.

| Qualified Person                                                        | Responsible for Parts                           |
|-------------------------------------------------------------------------|-------------------------------------------------|
| Signed by Brian Thomas                                                  | Responsible for Items: 1.7, 1.8.1.2, 14, 25.2.1 |
| Brian Thomas, P.Geo.<br>(WSP Canada Inc.)<br>Date Signed: June 21, 2023 |                                                 |

| Qualified Person                                                          | Responsible for Parts                                                                                   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Signed by James McDonald                                                  | Responsible for Items: 1.1 – 1.4, 1.6, 1.8.1.1,1.8.2.1,<br>2 – 12.1,12.3, 15-24, 25.1, 25.2.2, 26.1, 27 |
| James McDonald, P.Geo.<br>(WSP Canada Inc.)<br>Date Signed: June 21, 2023 |                                                                                                         |

| Qualified Person                                                                      | Responsible for Parts                                                |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Signed by Steve Haggarty                                                              | Responsible for Items: 1.5, 1.8.1.3, 1.8.2.2, 12.2, 13, 25.2.3, 26.2 |
| Steve Haggarty, P.Eng.<br>(Haggarty Technical Services)<br>Date Signed: June 21,2023. |                                                                      |

#### **CERTIFICATE OF QUALIFIED PERSON**

I, James McDonald, state that:

- (a) I am a Senior Resource Geologist at: WSP Canada Inc 33 Mackenzie Street, Sudbury, Ontario, P3C4Y1
- (b) This certificate applies to the technical report titled Technical Report on the Wawa Gold Project with an effective date of: June 21, 2023 (the "Technical Report").
- (c) I am a "qualified person" for the purposes of National Instrument 43-101 ("NI 43-101"). My qualifications as a qualified person are as follows. I am a graduate of Laurentian University with Honours Bachelor Of Science (Geology), 1994, and a Member in good standing with the Professional Geoscientists of Ontario. My relevant experience after graduation and over 25 years for the purpose of the Technical Report includes Geologist at Golder Associates, Holt McDermott Mine (Barrick Gold), Chief Geologist North and South Mines (Vale), VP Resources Talon Metals and Senior Resource Geologist with WSP.
- (d) My most recent personal inspection of each property described in the Technical Report occurred on October 25, 2022, and was for a duration of 2 days.
- (e) I am responsible for Item(s) 1.1 1.4, 1.6, 1.8.1.1,1.8.2.1, 2 12.1,12.3, 15-24, 25.1, 25.2.2, 26.1, 27 of the Technical Report.
- (f) I am independent of the issuer as described in section 1.5 of NI 43-101.
- (g) I have not had prior involvement with the property that is the subject of the Technical Report.
- (h) I have read NI 43-101 and the part of the Technical Report for which I am responsible has been prepared in compliance with NI 43-101; and
- (i) At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the parts of the Technical Report for which I am responsible, contain(s) all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated at Sudbury, Ontario this 20<sup>th</sup> day of June, 2023.

"Signed and Sealed"

James McDonald, PGO 1475

#### **CERTIFICATE OF QUALIFIED PERSON BRIAN THOMAS**

I, Brian Thomas, state that:

(a) I am a Principal Geologist at:

WSP Canada Inc. 33 Mackenzie Street, Suite 100 Sudbury, Ontario, P3C 4Y1

- (b) This certificate applies to the technical report titled National Instrument 43-101 Technical Report for the Wawa Gold Project; with an effective date of: June 21, 2023 (the "Technical Report").
- (c) I am a "qualified person" for the purposes of National Instrument 43-101 ("NI 43-101"). My qualifications as a qualified person are as follows. I am a graduate of Laurentian University with a B.Sc. in Geology from 1994, I am a member in good standing of the Association of Professional Geoscientists of Ontario (#1366). My relevant experience after graduation, for the purpose of the Technical Report, includes over 28 years includes of experience in mine geology and mineral resource evaluation of mineral projects nationally and internationally in a variety of commodities including 9 years of direct working experience in gold mining operations located in northern Ontario.
- (d) My most recent personal inspection of each property described in the Technical Report occurred on March 21 22, 2019 and was for a duration of 2 days.
- (e) I am responsible for Item(s) 1.7, 1.8.1.2, 14, 25.2.1 of the Technical Report.
- (f) I am independent of the issuer as described in section 1.5 of NI 43-101.
- (g) My prior involvement with the property that is the subject of the Technical Report is as follows. I have previously participated in the 2021 Mineral Resource estimate and Technical Report titled National Instrument 43-101 Technical Report for the Wawa Gold Project, with an effective date of August 18, 2021; 2019 Mineral Resource estimate and Technical Report as publicly announced in the June 13, 2019 press release titled, "Red Pine announces New Mineral Resource Estimate for the Surluga Gold Deposit at its Wawa Gold Project, Ontario". I was also involved with the initial resource estimate of the Minto Mine South project as publicly announced in the November 15, 2018 press release titled, "Red Pine Announces Initial Mineral Resource estimate for its Minto Mine South Project" as well as the definition of Exploration Targets as publicly announced in the October 26th, 2017 press release titled, "Red Pine Exploration Reports Exploration Targets at its Wawa Gold Project".
- (h) I have read NI 43-101 and the parts of the Technical Report for which I am responsible have been prepared in compliance with NI 43-101; and
- (i) At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the parts of the Technical Report for which I am responsible, contain(s) all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated at Sudbury, Ontario this 21st of June 2023.

Signed by Brian Thomas

Brian Thomas; P.Geo.

#### **CERTIFICATE OF QUALIFIED PERSON STEVEN HAGGARTY**

- I, Steven Haggarty, P. Eng., state that:
- (a) I am an independent Metallurgist at:

Haggarty Technical Services Corp. 2083 Country Club Drive Burlington, Ontario L7M 3V3

- (b) This certificate applies to the technical report titled "National Instrument 43-101 Technical Report for the Wawa Gold Project" with an effective date of: June 21, 2023 (the "Technical Report").
- (c) I am a "qualified person" for the purposes of National Instrument 43-101 ("NI 43-101"). My qualifications as a qualified person are as follows. I am a graduate of McGill University with a B.Eng. in Metallurgy from 1980, am a member in good standing of the Association of Professional Engineers of Ontario (#100177647). My relevant experience after graduation includes over 40 years of experience in mine site development, mine site operations, mineral processing, metallurgy, and exposure to mineral projects nationally and internationally in a variety of commodities including copper, molybdenum, gold, silver, palladium, platinum with companies including Teck Corporation, International Corona, Homestake Mining, Barrick Gold Corporation.
- (d) I had the opportunity to visit the Red Pine Exploration, Wawa Gold Project on May 25, 2023, with a tour of the property and the core shack for the project described in the Technical Report. I was directly involved in the previous definition and completion of associated metallurgical testwork at McClelland Laboratories in Sparks, Nevada. During the May 2023 site visit I was able to examine remnant sections of drill core, from the same zones and mineralized intercepts that were the subject of previous metallurgical testwork, involving fine grained sulfides in fine quartz veining.
- (e) I am responsible for items 1.5, 1.8.1.3, 1.8.2.2, 12.2, 13, 25.2.3, 26.2 of the Technical Report.
- (f) I am independent of the issuer as described in section 1.5 of NI 43-101.
- (g) I have not had prior involvement with the property that is the subject of the Technical Report.
- (h) I have read NI 43-101 and the part of the Technical Report for which I am responsible has been prepared in compliance with NI 43-101; and
- (i) At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the parts of Technical Report for which I am responsible, contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated at Burlington, Ontario May 26, 2023.

Steren Hoge =

Steven Haggarty, P. Eng.

Haggarty Technical Services, Corp.

# **Table of Contents**

| 1.0 | SUM   | MARY                                                                   | 1-1  |
|-----|-------|------------------------------------------------------------------------|------|
|     | 1.1   | Property Description and Ownership                                     | 1-1  |
|     | 1.2   | Geology and Mineralization                                             | 1-4  |
|     | 1.3   | Exploration Status                                                     | 1-4  |
|     | 1.4   | Data Verification                                                      | 1-7  |
|     | 1.5   | Mineral Processing and Metallurgical Testing                           | 1-7  |
|     | 1.6   | Development and Operations Status                                      | 1-8  |
|     | 1.7   | Mineral Resource Estimates                                             | 1-8  |
|     | 1.8   | QP Conclusions and Recommendations                                     | 1-11 |
| 2.0 | INTR  | ODUCTION                                                               | 2-1  |
|     | 2.1   | Source of Information                                                  | 2-1  |
|     | 2.2   | Qualified Persons and Site Inspection                                  | 2-2  |
|     | 2.3   | Units of Measure and Abbreviations                                     | 2-3  |
| 3.0 | RELI  | ANCE ON OTHER EXPERTS                                                  | 3-1  |
| 4.0 | PROF  | PERTY DESCRIPTION AND LOCATION                                         | 4-1  |
|     | 4.1   | Ownership                                                              | 4-1  |
|     | 4.2   | Property Land Tenure                                                   | 4-1  |
|     | 4.3   | Permits and Authorization                                              | 4-32 |
|     | 4.4   | Environmental Considerations                                           | 4-33 |
| 5.0 | ACCE  | ESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY | 5-1  |
|     | 5.1   | Accessibility                                                          | 5-1  |
|     | 5.2   | Local Resources and Infrastructure                                     | 5-1  |
|     | 5.3   | Climate                                                                | 5-1  |
|     | 5.4   | Physiography                                                           | 5-1  |
| 6.0 | HISTO | DRY                                                                    | 6-1  |
|     | 6.1   | Discovery Period – 1897 to 1910                                        | 6-4  |
|     | 6.2   | Peak of Mining Activity – 1925 to 1938                                 | 6-6  |

|      | 6.3   | Surluga Mine Discovery and First Mining Operation – 1960 to 1976                          | 6-6    |
|------|-------|-------------------------------------------------------------------------------------------|--------|
|      | 6.4   | Exploration Concentrated within the Southern Part of the Wawa Gold Project - 1980 to 1986 | 6-10   |
|      | 6.5   | Second Mining of the Surluga Mine by Citadel Gold Mines – 1986 to 1991                    | 6-13   |
|      | 6.6   | Optioning of the Surluga Deposit – 1990 to 1996                                           | 6-18   |
|      | 6.7   | Recent Period – Redevelopment of the Surluga Deposit 2007 to 2016                         | 6-19   |
| 7.0  | GEOI  | LOGICAL SETTING AND MINERALIZATION                                                        | 7-1    |
|      | 7.1   | Regional Geology                                                                          | 7-1    |
|      | 7.2   | Local Geology                                                                             | 7-2    |
|      | 7.3   | Property Geology                                                                          | 7-2    |
|      | 7.4   | Structure and Gold Mineralization                                                         | 7-11   |
|      | 7.5   | Alteration                                                                                | 7-25   |
| 8.0  | DEPC  | DSIT TYPES                                                                                | 8-1    |
| 9.0  | EXPL  | ORATION                                                                                   | 9-1    |
|      | 9.1   | 2014 to 2022 Rock Sampling                                                                | 9-1    |
|      | 9.2   | Geophysics                                                                                | 9-37   |
|      | 9.3   | Channel Sampling 2015 to 2022                                                             | 9-57   |
|      | 9.4   | Historical Holes Sampling Program (2016, 2018)                                            | 9-79   |
| 10.0 | DRILI | LING                                                                                      | 10-1   |
|      | 10.1  | Drill Program Design and Implementation                                                   | 10-1   |
|      | 10.2  | Summary Drill Program Results                                                             | 10-2   |
|      | 10.3  | Geotechnical Core Processing                                                              | .10-21 |
|      | 10.4  | Core Logging and Analyses                                                                 | .10-23 |
|      | 10.5  | Assay Results                                                                             | .10-24 |
| 11.0 | SAM   | PLING PREPARATION, ANALYSES, AND SECURITY                                                 | 11-1   |
|      | 11.1  | Historical Drilling Programs                                                              | 11-1   |
|      | 11.2  | Red Pine 2014 to 2022 Sampling                                                            | 11-1   |
|      | 11.3  | QP Comments on QA/QC                                                                      | .11-15 |
| 12.0 | DATA  | VERIFICATION                                                                              | 12-1   |

|      | 12.2  | Definition of 2019 Metallurgical Composite Samples            | 12-14 |
|------|-------|---------------------------------------------------------------|-------|
|      | 12.3  | Conclusions and Recommendations                               | 12-14 |
| 13.0 | MINE  | RAL PROCESSING AND METALLURGICAL TESTING                      | 13-1  |
|      | 13.1  | Selection of Metallurgical Samples                            | 13-1  |
|      | 13.2  | Sample Preparation and Head Analysis                          | 13-2  |
|      | 13.3  | Interpretations, Conclusions and Recommendations              | 13-11 |
| 14.0 | MINE  | RAL RESOURCE ESTIMATES                                        | 14-1  |
|      | 14.1  | Introduction                                                  | 14-1  |
|      | 14.2  | Surluga                                                       | 14-2  |
|      | 14.3  | Minto Mine South Deposit                                      | 14-18 |
|      | 14.4  | Combined Mineral Resource Estimate for the Wawa Gold Project  | 14-40 |
| 15.0 | MINE  | RAL RESERVE ESTIMATES                                         | 15-1  |
| 16.0 | MININ | G METHODS                                                     | 16-1  |
| 17.0 | RECC  | VERY METHODS                                                  | 17-1  |
| 18.0 | PROJ  | ECT INFRASTRUCTURE                                            | 18-1  |
| 19.0 | MAR   | ET STUDIES AND CONTRACTS                                      | 19-1  |
| 20.0 | ENVIF | RONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT | 20-1  |
| 21.0 | CAPI  | TAL AND OPERATING COSTS                                       | 21-1  |
| 22.0 | ECON  | IOMIC ANALYSIS                                                | 22-1  |
| 23.0 | ADJA  | CENT PROPERTIES                                               | 23-1  |
|      | 23.1  | Historical Gold Mines                                         | 23-1  |
| 24.0 | OTHE  | R RELEVANT DATA AND INFORMATION                               | 24-1  |
| 25.0 | INTEF | RPRETATION AND CONCLUSIONS                                    | 25-1  |
|      | 25.1  | Interpretations                                               | 25-1  |
|      | 25.2  | Conclusions                                                   | 25-1  |
| 26.0 | RECC  | MMENDATIONS                                                   | 26-1  |
|      | 26.1  | QA/QC and Database                                            | 26-2  |
|      | 26.2  | Metallurgical Recommendations                                 |       |

| 27.0 | REFERENCES | 27- | -1 |
|------|------------|-----|----|
|------|------------|-----|----|

#### TABLES

Table 1-1: Surluga Mineral Resource Estimate (Effective Date May 31, 2019)

- Table 1-2: Minto Mine South Mineral Resource Estimate (Effective Date November 7, 2018)
- Table 1-3: Wawa Gold Project Combined Mineral Resource Estimate
- Table 1-4: Summary of Recommended Work Program
- Table 1-5: Summary of Recommended Metallurgical Testing Program
- Table 4-1: List of Surface Rights Taxes on Leases and Patents (for Municipality of Wawa and MNRF Tenant Tax)
- Table 4-2: List of Lease Rent Obligations (MNDM)
- Table 4-3: List of Mining Tax Obligations (MNDM)
- Table 4-4: List of Unpatented Mining Claims and NSRs on the Wawa Gold Project in Good Standing
- Table 6-1: Historical Gold Mine and Gold Production Once Active on the Wawa Gold Project
- Table 6-2: Historical Exploration and Mining Activity during the Discovery Period of the Wawa Gold Project
- Table 6-3: Historical Exploration and Mining Activity during the Peak of Mining Activity on the Wawa Gold Project
- Table 6-4: Historical Exploration and Mining Activity during the First Development of the Surluga Mine
- Table 6-5: Historical Surface Diamond Drill Holes Completed on the Wawa Gold Project in the 1960 to 1975 Period
- Table 6-6: Historical Underground Diamond Drill Holes Completed in the Surluga Deposit in the 1960 to 1975 Period
- Table 6-7: Highlight from Surface Holes Drilled in the Surluga Deposit between 1960 and 1969
- Table 6-8: Historical Exploration during the 1980 to 1986 Period
- Table 6-9: Historical Drilling by Dunraine Mines on the Wawa Gold Project during the 1980 to 1986 Period
- Table 6-10: Historical Exploration and Mining Activity during the Second Development of the Surluga Mine
- Table 6-11: Historical Surface Diamond Drill Holes from the Second Development Stage of the Surluga Mine
- Table 6-12: Historical Underground Diamond Drill Holes from the Second Development Stage of the Surluga Mine
- Table 6-13: Highlights from Citadel Surface Drilling on the Surluga Deposit between 1987 and 1989
- Table 6-14: Historical Surface Diamond Drill Holes Drilled by Van Ollie
- Table 6-15: Intersection Highlights from Historical Holes of Van Ollie
- Table 6-16: Historical Work Performed during the Optioning Period of the Surluga Deposit
- Table 6-17: Historical Resource Estimate for the Surluga Deposit by Bowdidge (1996)
- Table 6-18: Exploration Programs of the 1991 to 2007 Period
- Table 6-19: Surface Diamond Drill Holes from the 2007 Drilling Program

Table 6-20: Selected Assay Highlights for Wawa GP's 2007 Drilling Program

- Table 6-21: Augustine's 2011 Drilling Program
- Table 6-22: Assay Highlights for Augustine's 2011 Drilling Program
- Table 6-23: Assay Highlights of the Grab Samples Collected by Augustine in 2011
- Table 6-24: 2015 Mineral Resource Estimate\*
- Table 9-1: Summary of Rock Samples Collected 2014 2022
- Table 9-2: List of Samples Collected by Red Pine in 2014 2022
- Table 9-3: Features Identified from Spectral IP/Res Data by Clearview Geophysics Inc. Coordinates are Listed in NAD83, UTM Zone 16N
- Table 9-4: Parameters of the Ground Magnetic Survey (October 2015)
- Table 9-5: HLEM Survey Parameters
- Table 9-6: Interpreted Anomalies of 50 m Tx-Rx Separation Survey Selected by ClearView
- Table 9-7: Helicopter-Borne Gradient Magnetic Survey Parameters
- Table 9-8: Parameters of the Cross-hole IP/Resistivity Survey
- Table 9-9: Location, Length, and Orientation of Channels Collected during the 2015 to 2022 Programs
- Table 9-10: Assay Highlights of Channel Samples Collected during the 2015 to 2022 Programs (> 0.5 g/t Au)
- Table 9-11: Attributes of the Historical Core Sampling Program
- Table 9-12: Historical Holes Sampled by Red Pine during the 2016 and 2018 Sampling Programs
- Table 9-13: Highlights of Assays Results of Historical Holes Obtained from Intervals Left Un-sampled by Previous Operators and Sampled by Red Pine during the 2016 and 2018 Sampling Programs (> 2.0 g/t Au)
- Table 10-1: Summary of the 2014 to 2022 Wawa Gold Project Drill Holes
- Table 10-2: Drill hole Highlights by Red Pine on the Wawa Gold Project During 2014 to 2022
- Table 10-3: Details of 2014 to 2022 Drill Programs
- Table 10-4: Summary of Assay Results (> 2.7 g/t Au) and Gold Zone intersected from 2014 to 2022 Drilling Programs
- Table 11-1: CRM Standard and Blank Material Used by Red Pine during the 2014 to 2022 Drilling Programs
- Table 11-2: QA/QC Sample Count
- Table 12-1: Independent Sample Verification Intervals
- Table 12-2: Comparison of Drill Hole Collar Coordinates
- Table 12-3: Original and 2022 Re-Assay Results from Historical Core
- Table 12-4: Summary of Assay Comparisons to Original Certificates
- Table 12-5: 2019 Metallurgical Testing Composite Sample Details

- Table 13-1: Gold Head Assay Results and Head Grade Comparisons, Surluga/Minto Composite Samples
- Table 13-2: Silver Head Assay Results and Head Grade Comparisons, Surluga/Minto Composite Samples
- Table 13-3: Sulphide Sulphur Analysis Results, Surluga/Minto Composite Samples
- Table 13-4: Overall Metallurgical Results, Agitated Cyanidation Tests, Surluga/Minto Composite Samples, 80%-75μm Feed Size
- Table 13-5: Overall Metallurgical Results, Agitated Cyanidation Test, Surluga/Minto Composite Samples, 80%-75μm Feed Size
- Table 13-6: Bulk Sulphide Flotation Concentration Test F-9 Results, Surluga/Minto Composite Sample RPX-1, 80%-75μm Feed Size
- Table 13-7: Bulk Sulphide Flotation Concentration Test F-10 Results, Surluga/Minto Composite Sample RPX-2, 80%-75μm Feed Size
- Table 13-8: Bulk Sulphide Flotation Concentration Test F-8 Results, Surluga/Minto Composite Sample RPX-3, 80%-75μm Feed Size
- Table 13-9: Bulk Sulphide Flotation Concentration Test F-6 Results, Surluga/Minto Composite Sample RPX-4, 80%-75μm Feed Size
- Table 13-10: Bulk Sulphide Flotation Concentration Test F-4 Results, Surluga/Minto Composite Sample RPX-5, 80%-75μm Feed Size
- Table 13-11: Bulk Sulphide Flotation Concentration Test F-1 Results, Surluga/Minto Composite Sample RPX-6, 80%-75μm Feed Size
- Table 13-12: Bulk Sulphide Flotation Concentration Test F-3 Results, Surluga/Minto Composite Sample RPX-7, 80%-75μm Feed Size
- Table 13-13: Bulk Sulphide Flotation Concentration Test F-7 Results, Surluga/Minto Composite Sample RPX-8, 80%-75μm Feed Size
- Table 13-14: Bulk Sulphide Flotation Concentration Test F-11 Results, Surluga/Minto Composite Sample RPX-9, 80%-75μm Feed Size
- Table 13-15: Bulk Sulphide Flotation Concentration Test F-2 Results, Surluga/Minto Composite Sample RPX-10, 80%-75μm Feed Size
- Table 13-16: Bulk Sulphide Flotation Concentration Test F-5 Results, Surluga/Minto Composite Sample RPX-11, 80%-75μm Feed Size
- Table 14-1: Comparison of Sample Statistics
- Table 14-2: Block Model Volume Definition
- Table 14-3: Search Volume Controls Used for Au Grade Estimation
- Table 14-4: Statistical Comparison of Global Mean Au Grades
- Table 14-5: Surluga Mineral Resource Estimate (Effective Date May 31, 2019)
- Table 14-6: Surluga Cut-off Sensitivity Comparison
- Table 14-7: Au Statistics of Raw Data Captured within the Mineralization Envelopes
- Table 14-8: Au Statistics of Verified Data Captured within the Mineralization Envelopes

- Table 14-9: Summary of Au Statistics during the EDA Process
- Table 14-10: Block Model Volume Definition
- Table 14-11: Search Volume Controls used for Au Grade Estimation
- Table 14-12: Statistical Comparison of Global Mean Grades
- Table 14-13: Minto South Mineral Resource Estimate (Effective Date November 7, 2018)
- Table 14-14: Minto South Mineral Resource Cut-off Sensitivity
- Table 14-15: Wawa Project Combined Mineral Resource Estimate
- Table 14-16: Wawa Gold Project Mineral Resource Summary of Changes
- Table 26-1: Summary of Recommended Work Program
- Table 26-2: Summary of Recommended Metallurgical Testing Program

#### **FIGURES**

Figure 4-1: Location of Red Pine's Wawa Gold Project

- Figure 4-2: North Claim Map Showing the Patents and Claims of the Wawa Gold Project
- Figure 4-3: South Claim Map Showing the Patents and Claims of the Wawa Gold Project
- Figure 5-1: Location of Red Pine's Wawa Gold Property
- Figure 6-1: Map Showing the Main Historical Mines, Shafts, and Pits on the Wawa Gold Project
- Figure 6-2: Historical Drilling and Operators though the History of the Wawa Gold Project
- Figure 7-1: Regional Geology of the Michipicoten Greenstone Belt and Location of the Wawa Gold Project (Labelled in the Figure as "Wawa Gold Project")
- Figure 7-2: Geology Map of the Wawa Gold Project from Ronacher et al. (2015)
- Figure 7-3: Medium- to Coarse-Grained Facies of the Jubilee Stock Diorite near the Contact with the Volcanic Units Containing Enclaves of Volcanic Rocks
- Figure 7-4: Typical Jubilee Stock Diorite in the Core of the Jubilee Stock
- Figure 7-5: Feldspar-Quartz Porphyritic Intrusion Surface Exposure near the Surluga Deposit
- Figure 7-6: Silica-sodic Altered Unit Formed near the Contacts between the Jubilee Stock and the Volcanic Units
- Figure 7-7: Intrusive Breccia Formed at the Contact between the Jubilee Stock Medium- to Coarse-Grained Diorite and the Volcanic Units at the Sunrise #4 Gold Showing
- Figure 7-8: Intrusive Breccia Texture in Drill Hole and Melanocratic Feldspar-Phyric Unit in the Contact Zone between the Jubilee Stock Coarse-Grained Diorite and the Volcanic Units
- Figure 7-9: Coarse-Grained Tholeiitic Gabbroic Intrusion in the Jubilee Stock
- Figure 7-10: Fine-Grained Tholeiitic Gabbro in the Jubilee Stock
- Figure 7-11: Replacement-like Mineralization in the Jubilee Shear Zone Hanging Wall
- Figure 7-12: Characteristic Stretching Lineation of the Wawa Gold Corridor Preferentially Partitioned in a Mafic Dyke (William Gold Zone)
- Figure 7-13: Gold Mineralization in the Grace Deformation Zone Related to the Historical Darwin-Grace Mine
- Figure 7-14: Stripped Outcrop of the Main Domain of the Jubilee Shear Zone
- Figure 7-15: Grey Quartz Vein with Pyrite Representative of the Higher-Grade Zones of the Pyritic Gold Zones of the Surluga Deposit
- Figure 7-16: Quartz Vein Stretched in the Stretching Lineation Characteristic of the Jubilee Shear Zone
- Figure 7-17: Quartz-Tourmaline Veins of the Minto Deformation Period in the Surluga Deposit
- Figure 7-18: Hornblende Shear Zone Exposure
- Figure 7-19: Intersection of the Minto A Shear Zone, Related to the Minto Mine
- Figure 7-20: Cooper Shear Zone

- Figure 7-21: Zone of Higher-Grade Mineralization in the Minto B Shear Zone
- Figure 7-22: Sericitic Alteration Fronts Formed in the Shoulders of the Wawa Gold Shear Zone
- Figure 9-1: Location of Grab Samples Collected by Red Pine from 2014 to 2022
- Figure 9-2: Gold grade and location of Grab Samples Collected by Red Pine from 2014 to 2022
- Figure 9-3: Total Magnetic Intensity of Wawa Ground Magnetic Survey
- Figure 9-4: Red Pine Wawa Gold Project 2014 IP Survey Lines
- Figure 9-5: Clearview Geophysics from 50 m Tx-Rx Separation HLEM OP 7040 Grid Data
- Figure 9-6: Anomalies Selected by Clearview Geophysics from 50 m Tx-Rx Separation HLEM Data (Total Magnetic Intensity Data [Oct 2015] Underlain
- Figure 9-7: Grid of Pole-Reduced Calculated Vertical Derivative of Total Magnetic Intensity
- Figure 9-8: Wawa Gold Project Transient AMT Grid
- Figure 9-9: SCI VTEM Data Inversion Misfit Grid
- Figure 9-10: Residual Anomaly Profiles Overlaid on the Geological Map of the Wawa Gold Property
- Figure 9-11: Clearview Geophysics Inc. Cross-Hole IP Collar Locations
- Figure 9-12: Red Pine Wawa Gold Project Trenching and Channel Sampling Locations from 2015 to 2022
- Figure 9-13: Red Pine Wawa Gold Project Trenching and Channel Sampling Locations from 2015 to 2022 showing Gold Grade
- Figure 9-14: Red Pine Wawa Gold Project 2016 and 2018 Historical Diamond Drill Core Sampling Program Collar Locations
- Figure 9-15: Red Pine Wawa Gold Project 2016 and 2018 Historical Diamond Drill Core Sampling Program Gold Gradea
- Figure 10-1: Diamond Drill Hole Collar Location 2014 to 2022
- Figure 10-2 Oblique cross-section looking north-east with new drilling of the Jubilee Shear Zone.
- Figure 10-3 Oblique cross-section looking north-east of new drilling intersecting the Minto and Jubilee Shear Zones
- Figure 10-4: Drill Collar Location for SD-18-216 through SD-18-221
- Figure 10-5: TerraSpec 4 Hi-Res Mineral Spectrometer and Data Acquisition Computer on the Rolling Table Used to Acquire SWIR Data on Historical Core
- Figure 11-1: Security Sealed Rice Bags Containing 4 Individual Sample Bags Each
- Figure 11-2: Secure Core Storage Area Next to Red Pine's Core Logging Facility in Wawa, Ontario
- Figure 11-3: SG Measurement at Red Pine's Core Logging Facility
- Figure 11-4: Control Chart for Blanks between 2014 and 2022
- Figure 11-5: Control Chart for CRM OREAS 231 between 2014 and 2022
- Figure 11-6: Control Chart for CRM OREAS 235 between 2014 and 2022
- Figure 11-7: Control Chart for CRM OREAS 279 between 2014 and 2022

- Figure 12-1: SD-21-312A <sup>1</sup>/<sub>4</sub> Core Verification Sampling (Jubilee Shear Zone)
- Figure 12-2: SD-22-377 Quarter Core Verification Sampling (Minto Shear Zone)
- Figure 12-3: XY Scatterplot Comparison of Verification Sample Results
- Figure 12-4: Drill Hole Collar Location of Hole SD-21-302
- Figure 12-5: 2022 Historical Core (pre2014) Verification Re-assay versus Original Assay
- Figure 12-6: Summary of Verification Samples from 2014-2022 Red Pine Drilling
- Figure 12-7: Summary of Verification Samples from pre-Red Pine Historical Drilling
- Figure 12-8: All Historical Core Re-Assay Results versus Original Values
- Figure 12-9: 2018 Confirmation Drill Hole Locations (Plan View)
- Figure 12-10: Confirmation Hole SD-18-229
- Figure 12-11: Confirmation Hole SD-18-231
- Figure 12-12: Confirmation Hole SD-18-238
- Figure 14-1: Surluga Shear Zones (Oblique View Facing Northeast)
- Figure 14-2: Comparison of Au grade Populations Between Primary Samples (green) and Re-sampled Historical Samples
- Figure 14-3: Comparison of Au grade Populations Between Stratigraphic Rock Units in Re-sampled Historical Samples
- Figure 14-4: Comparison of Au grade Populations Between Drill Generations
- Figure 14-5: Comparison of Current vs Historical Drill Hole Distributions (Recent Holes Left, Historical Holes Right)
- Figure 14-6: XY Scatterplot of Au Grades (g/t) vs Sample Length (m)
- Figure 14-7: Histogram of Au Grades (g/t)
- Figure 14-8: East-West Cross-Section (5,316,450N) Facing North
- Figure 14-9: North-South Long-Section (668,400E) Facing West
- Figure 14-10: Longitudinal (North-South) Swath Plot of the Surluga Block Model
- Figure 14-11: Block Model Volume Excluded from Mineral Resource to Account for Historical Mining
- Figure 14-12: Surluga Mineral Resource Classification (Oblique View facing Northwest)
- Figure 14-13: Histogram of Density Measurements
- Figure 14-14: Shear Zone (green), Vein Zone (red), and Diabase Dyke (blue) Envelopes
- Figure 14-15: Au Histogram of Verified Sample Data within the Shear (Zone 1)
- Figure 14-16: Au Histogram of Verified Sample Data within the Vein (Zone 2)
- Figure 14-17: Au Cumulative Probability Distribution of the Vein (Zone 2)
- Figure 14-18: Scatterplot of Length versus Au Grade for the Vein (Zone 2)

- Figure 14-19: Histogram of Raw Sample Length (m) in the Combined Shear and Vein Zones
- Figure 14-20: Histogram of Composite Length (m) in the Combined Shear and Vein Zones
- Figure 14-21: Au Histogram of Composites within the Shear (Zone 1)
- Figure 14-22: Au Histogram of Composites within the Vein (Zone 2)
- Figure 14-23: Directional Variogram Model in the Down-plunge Direction
- Figure 14-24: Example of Dynamic Anisotropic Search Volume Control
- Figure 14-25: Example Cross-Section of Au Grade Distribution in the Block Model Relative to the Drill Hole Composites in Both the Vein and Shear Zones, East-West Section Facing North (5,315,460 N)
- Figure 14-26: Au Grade Distribution of Composite Samples in the Vein Zone
- Figure 14-27: Au Grade Distribution in the Block Model of the Vein Zone
- Figure 14-28: West-East Swath Plot of the Vein (Zone 1)
- Figure 14-29: Volume Extracted to Account for Previous Mining (pink, against the Shear Zone [green]) in the Northern Part of Minto South (development is magenta)
- Figure 14-30: Distribution of Mean Distance to Closest Three Drill Holes
- Figure 14-31: Resource Classification (Indicated is magenta, Inferred is green)

# 1.0 SUMMARY

The Wawa Gold exploration Project is located near Wawa, Ontario, Canada. Red Pine Exploration Inc. (Red Pine) owns a 100% effective interest in the Project, after the completion of an acquisition of the outstanding Citabar Limited Partnership (Citabar) interest.

This Technical Report was prepared for Red Pine and presents updated exploration data for the Project including the Surluga and Minto Mine South deposits (previous report effective date: August 6, 2021). New exploration data includes additional drilling, trenching and surface mapping results for many of the mineralized structures of the Property.

The Mineral Resource estimates and Technical Report were prepared by WSP Canada Inc. (WSP) in conjunction with Haggarty Technical Services Corp. (Haggarty) for the metallurgy related elements of the study. The Mineral Resources are disclosed in accordance with the Canadian Securities Administrators' National Instrument (NI) 43-101 and this Technical Report follows the requirements of Form 43-101F1.

Mineral Resource estimates remain unchanged from the July 16, 2019, Technical Report, titled "National Instrument 43-101 Technical Report for the Wawa Gold Project", as there has been limited new drilling in the existing resource areas and therefore no material change to the Mineral Resource estimate. Mineral Resource estimates were determined following the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines (November 2003) and were classified following the CIM Definition Standards for Mineral Resources & Mineral Reserves (May 2014). CIM Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines were later updated in November 2019 but it is the QP's opinion that the Mineral Resource estimate is consistent with the updated CIM guidelines.

The Qualified Persons (QPs) for this Technical Report are Mr. Brian Thomas, P.Geo., and Mr. James McDonald, P.Geo., both are independent QPs, as defined under NI 43-101 and employees of WSP. The QP for metallurgy is Mr. Steve Haggarty, P.Eng., an independent QP, as defined under NI 43-101 and an employee Haggarty Technical Services, based in Burlington, Ontario, Canada. The Report effective date is June 21, 2023.

A QP personal site inspection of the Project was last conducted by James McDonald between October 25, 2022, and October 26, 2022, to observe site conditions, review geological data collection and Quality Assurance and Quality Control (QA/QC) procedures and results, confirm drill collar locations, and complete verification sampling of drill core. Mr. Steve Haggarty, the QP for the metallurgy, personally inspected the site on May 25, 2023, and visually inspected remnant and current drill core characteristic of the deposit.

# **1.1 Property Description and Ownership**

## 1.1.1 Project Description and Location

The Project is located 2 kilometres (km) east of the Town of Wawa, Ontario and approximately 650 km northwest of Toronto (Figure 4-1). The Project is within the McMurray Township (NTS 41/n14) and centered on Universal Trans Mercator (UTM) North American 1983 Datum (NAD83) (Zone 16N) 669,800 metres (m) east and 5,315,000 m north. Legal access is available via Highway 101 from Wawa and the Surluga Mine Road, a private road owned and maintained by Red Pine.

Red Pine holds a 100% interest in the Project after the March 2021 acquisition of Citabar. Copies of the Assumption Agreement, the Joint Venture Agreement and the Purchase Agreement can be found under Red Pine's SEDAR profile on www.sedar.com. A copy of the Arrangement Agreement can be found under Augustine's

SEDAR profile. The descriptions of these agreements contained herein are qualified in their entirety by the full text of these agreements. See Section 4.1 for further details.

The Project consists of 301 unpatented and 122 patented or leased mining claims, totaling 7,031 hectares (Ha).

A list of patents, or leases, with tax obligations are listed in Table 4-1, Table 4-2, and Table 4-3, respectively. A list of unpatented mining claims in good standing and Net Smelter Returns (NSRs) are listed in Table 4-4. The obligations to maintain the property for 2023 amount to, Mining Land Tax: \$5,475.69, Municipal Tax: \$67,393.93, MNRF Tenant Tax: \$18,749.82 and Lease Rents: \$2,369.26. The regulator work obligations for unpatented (Cell) claims amount to \$89,200.00.

## 1.1.2 Accessibility, Climate, Local Resources, Infrastructure, and Physiography

The Wawa Gold property can be accessed by driving 2 km on Highway 101 from the Town of Wawa, ON, and then turning south (south or S) onto a gravel road using a 2-wheel drive vehicle. During the winter months, the main access road to the property from Highway 101 is plowed. Areas off the main road can be accessed by snowmobiles, or All-Terrain Vehicles (ATVs).

Wawa is located at 289 metres above mean sea level (m asl) and the property is hilly with a range of elevations from 300 m to 400 m asl. Steep ridges exist locally. The property is forested with spruce, pine, poplar and birch being the dominant species.

The vicinity to Lake Superior has a significant impact on the climate on the property. Environment Canada has recorded weather details in Wawa since 1981 (http://climate.weather.gc.ca) and showed that the warmest temperatures are recorded in July and August (daily mean 15°C; daily maximum 20.8°C). The coldest temperatures are typically recorded in January (daily mean -14°C; daily minimum -20.2°C). September and October are the months with the most rainfall (~122 millimetres [mm] and ~107 mm, respectively) and the highest snowfall occurs in December (~80 centimetres [cm]). The Project site can be operated year-round.

Wawa has a population of of 2,705 people (2021) (https://www12.statcan.gc.ca/census-recensement/2021). A 230-kV power line crosses the southern part of the property, and a second power line crosses the western part of the property. Wawa Municipal Airport is located 3.1 km south southwest of Wawa along highway 101, although no commercial airlines operate from the airport. Canadian National Railway acquired Algoma Central Railway in October of 2001 and ceased operation of the Sault Ste Marie to Hearst line in July of 2015. The government subsidy still stands, and the regional stakeholders are seeking a new rail operator. There is enough water available from lakes and streams on the property to support exploration and mining.

## 1.1.3 History

The Wawa area has been explored for gold since the 1860s (Rupert, 1997) and gold was first discovered by William Teddy in 1897 (Frey, 1987). A staking rush followed the change in claim staking adopted by the Ontario Government to encourage staking in 1895 (MacMillan and Rupert, 1990). The staking rush resulted in several discoveries and the first mine to start production was the Grace Mine (1901). In the 1930s, several mines commenced production, including the Parkhill, Minto, and Jubilee Mines (MacMillan and Rupert, 1990). By the early 1940s, 15 mines produced gold in the Wawa area (Frey, 1987).

The Surluga Mine was discovered in the early 1960s (Sage, 1991) and commenced production shortly after (Kuryliw, 1970 & 1972). The Surluga Mine continued production until the mid-1970s. The early 1980s saw the consolidation of various properties from previous owners into one land package. In the mid-1980s the Surluga Mine was dewatered and the mine shaft was refurbished as part of restarting the mining operations, and mining operations continued until the Surluga mine ceased operations in 1990 (Rupert, 1997). The 1990s was a period when the Project was optioned multiple times by different groups to evaluate the various mines and a period of limited exploration; with the acquisition of the Sunrise-Mickelson vein systems and the Van Sickle mine to the land package (Bradshaw, 1991; Bowdidge, 1996; Rupert, 1997). The late 2000's saw the rejuvenation of exploration on the Project with extensive drilling starting near the end of the decade and extensive exploration taking place at the Surluga mine and surrounding areas (Gow, 2011). Yearly exploration has continued at the Project since the late 2000s and is ongoing. Eight past-producing mines exist on the Project: Cooper, Minto, Jubilee, Surluga, Parkhill, Grace-Darwin, Mariposa, and Van Sickle. See Figure 6-1 for location of past producing mines.

In 2016, SRK estimated a Mineral Resource based on information from 2,007 historical drill holes (totaling 126,067 m) drilled between 1960 and 1990, core drilled respectively by Wawa GP Inc. and Augustine Ventures in 2007 and 2011, and an additional 26 drill holes (totaling 5,594 m) drilled by Red Pine in 2014 and 2015. SRK reported the tonnage and grade estimates at two cut-off grades: 0.4 grams per tonne (g/t) and 2.5 g/t gold (Au) for open pit and underground Mineral Resources, respectively. This estimation was completed in conformity with CIM Mineral Resource and Mineral Reserves Estimation Best Practices Guidelines (November 2003). The blocks were classified according to CIM Definition Standards for Mineral Reserves and Mineral Reserves (May 2014) guidelines. This estimation does not represent Mineral Reserves and has not demonstrated economic viability. The effective date of the Mineral Resource estimate was May 26, 2015 (Ronacher et al. 2015). This Mineral Resource estimate is no longer current and has been superseded by this Technical Report. Refer to Item 6.7.3 for more details.

## 1.1.4 Environmental Liabilities

Red Pine is in the process of completing a mine closure plan. As part of the Closure Plan, Red Pine has capped mine shafts that were exposed to the environment while the filling of two historical Macay Point pits remains to be completed. A Certificate of Approval (COA) regarding Minto Lake Tailings Dam and Pond has been issued and required conditions being monitored. Tests have indicated that all rock samples found at the site have moderate to high buffering capacity with regards to acid generating potential. All patented mining claims for which mining rights are held are part of the closure plan except for PAT-775, 776, and 777 which were recently purchased in 2022.

## 1.2 Geology and Mineralization

The property is in the Michipicoten greenstone belt of the Wawa Sub-province (Superior Province). The Michipicoten greenstone belt consists of three cycles of mafic and felsic metavolcanic rocks with associated subvolcanic intrusions and metasedimentary rocks (Sage, 1994). The Jubilee Stock, which hosts the mineralization on the property, is described as a high-level intrusion of dioritic to a dominantly granodioritic composition with many intrusive facies (Frey, 1987; Sage, 1993). The core of the Jubilee Stock is curved-shaped into a sigmoid form. Its long axis is oriented at 20° and it has a 6 km x 1.3 km surface expression. The grain size of the intrusion composing the Jubilee Stock is fine to medium grained and locally porphyritic. It intruded its host volcanic sequence around 2,745 ± 3 Million years (Ma) before present (BP) (Sullivan et al. 1985).

Gold mineralization is conspicuous throughout the Project and mineralization is closely related to the structural setting of the property characterized by numerous shear zones, fractures, and faults of variable orientations.

The zones of gold mineralization of the Wawa Gold Corridor formed after felsic to mafic hosts. Gold concentration typically relates to finely disseminated sulphides (pyrite or arsenopyrite) in quartz veins, and in silicified and sericitized lenses and pods within shear and breccia zones.

In zones of gold mineralization formed after mafic rocks, gold concentration is typically related to quartz veins associated with chlorite and iron carbonate alteration with disseminated pyrite and/or pyrrhotite with weak to moderate sericitization.

# 1.3 Exploration Status

Extensive historical exploration has been completed on the property. A total of 986 historical and recent surface diamond drill holes totaling 195,040 m and 1,444 historical underground drill holes totaling 46,975 m have been

drilled on the Project since the first drill hole was drilled in the 1930s. Eight past-producing mines exist on the property.

## 1.3.1 Exploration Drilling

Red Pine commenced drilling on the Project in December of 2014. A total of 413 diamond drill holes were drilled since 2014 totaling 114,840.5 m. A total of 43,248 core samples were analyzed; 68,893 core samples were analyzed at Activation Laboratories (Actlabs) in their facilities in Timmins and Ancaster, and 4,606 samples were analyzed by SGS at their facilities in Cochrane and Lakefield. Two routine gold analytical packages were selected by Red Pine for the analysis completed by SGS and Actlabs.

## 1.3.2 Surface Exploration

In the field seasons of 2015, 2016, 2017, 2018, 2019, 2020, 2021 and 2022, surface exploration programs on the Project focused on the gold showings and then the broader footprint of the Jubilee Stock. The objectives were to identify and confirm the geological and structural attributes of gold mineralization near historical showings, and to identify new zones of gold mineralization on the property. In total, 1,231 rock samples were taken on the property, with gold grades ranged from below detection to 143 g/t Au. The reader is cautioned that grab samples are selective by nature and are not representative of the actual grade of a mineralized target.

## 1.3.3 Geophysical Surveys

A ground magnetic survey was conducted by Red Pine, between December 3, 2014, and January 26, 2015. A total of 69.7 line-kms were collected covering an area of 2.23 square kilometres (km<sup>2</sup>). The ground magnetic survey outlined the strike of the Jubilee shear zone that is expressed as a magnetic low striking approximately 015°. Areas of increased magnetization coincide with the Jubilee shear plane. Linear features, oriented east to west, are observed in the magnetic data.

Red Pine contracted Clearview Geophysics Inc. ("Clearview") to conduct Spectral Induced Polarization and Resistivity ("Spectral IP/Res") surveys on the Project between December 12, 2014, and December 16, 2014. The objective of the survey was to determine if the Spectral IP/Res results could be used to enhance drill targeting for gold mineralization. The survey array geometry constituted a Pole-Dipole "Combo" array, whereby the dipole spacing ("a") for n = 1-6 was a = 50 m, and for n = 7-8, a = 100 m. A total of four lines were surveyed covering 3.08 line-km. Three anomalous features were selected by Clearview from the survey results. Red Pine furthered the interpretation of the Spectral IP/Res by contracting Abitibi Geophysics Inc. ("Abitibi Geophysics") to complete an inversion of the Spectral IP dataset using the RES2DINV inversion code developed by Geotomo Software Sdn. Bhd. The purpose of the inversion was to appropriately place the chargeability and apparent resistivity features at depth and relate them to the known Jubilee shear plane. The inversion results of both resistivity and chargeability reflect the easterly dip of the Jubilee shear zone, with higher resistivity values east and above the shear zone. A broad chargeability contrast is also associated with the shear zone.

Red Pine contracted Scott Hogg & Associates Ltd. ("Scott Hogg") to fly a helicopter-towed gradient magnetic survey in February 2015. A total of 928 line-km of data were collected, covering an area of 37 km<sup>2</sup>. Significant structures such as the Hornblende Shear, the Jubilee Shear, the Parkhill fault, and the extension of the Jubilee Shear Zone south of the Parkhill fault could be identified from this survey data.

In October 2015, Red Pine contracted Clearview to complete a ground magnetic survey at the Sunrise-Mickelson area, following-up on the 2015 sampling program in the area. The purpose of this work was to identify magnetic anomalies and identify zones and trends to help guide gold exploration. A total of 12.3-line kms were collected at

20-m line spacing, covering an area of 0.17 km<sup>2</sup>. The survey delineated several subtle ENE trending magnetic linear features, including one associated with the southeastern arm of the Surluga grade shell.

In October 2015, subsequent to the magnetic survey, Clearview completed a ground horizontal loop electromagnetic ("HLEM") on the Project. The survey was completed using an Apex MaxMin system and is often referred to as a "MaxMin" survey ("MaxMin"). The purpose of this work was to locate electromagnetic anomalies and identify zones and trends that help guide gold exploration. Two cable separations were recorded: 50 m and 100 m, in horizontal-coplanar orientation. The 50-m transmitter ("Tx") to receiver ("Rx") separation consisted of 6.3 line-km, covering 0.112 km<sup>2</sup> and the 100 m Tx-Rx separation consisted of 4.2 line-km, covering 0.052 km<sup>2</sup>. Eleven anomalies were selected from the 50 m Tx-Rx separation based on the in-phase and quadrature responses.

In June of 2017, Red Pine contracted EMPulse to conduct a Transient Magnetotelluric Survey on the Project, a total of 137 impedance-tipper stations were collected at a spacing of ~300 m. The survey was conducted to map the shallow poorly conducting gold-bearing shear zones of the Surluga Deposit as well as the deep conductive/structural sources that likely tie together the mineral occurrences that have been identified and outline any potential structural controls and sources of mineralization that exists at depth along the Wawa Gold Corridor.

In March of 2019, Red Pine contracted Abitibi Geophysics to conduct a high-resolution ground gravity survey on the project. The gravity survey was undertaken to detect abandoned underground workings of the Jubilee Mine, to delineate prospective targets for gold mineralization and to trace the southern extension of the Jubilee Stock. The gravity method mapped the Jubilee Stock by negative residual responses and confirmed the extension of the Jubilee Stock to the SW of where historical mapping defined its boundary.

In May 2020, Red Pine contracted Clearview Geophysics Inc. to conduct a cross-hole IP/resistivity survey on the Surluga Deposit. The purpose of the work was to map trends and zones in three-dimensions (3D) to assist with planning follow-up exploration drilling. The cross-hole survey identified variations that could indicate cross-cutting trends and structures such as folds. Highest priority for follow-up should be at areas with weak to strong chargeability high responses.

## 1.3.4 Channel Sampling

Concurrently with its drilling, historical core sampling and surface exploration programs, Red Pine completed numerous trenching and channel sampling programs that continued during the field seasons of 2015, 2016, 2017, 2018, 2019, 2020, and 2021. A total of 1,570 channel samples were collected over 519 channels from 63 different areas. The main objective of the trenching programs was to characterize the surface geology and mineralization of recently discovered and historical showings along the Wawa Gold Corridor. These showings include: the Root Vein, Cooper-Ganley, Mickelson-Sunrise, Jubilee Shear Zone, and its extension south of the Parkhill Fault, Surluga Road Shear Zone, Hornblende Shear zone, Algoma, Minto Mine South, Minto B, Grace Shear Zone, the War Eagle trend, and also prospective structures identified from the geophysical surveys. Trenching and channel sampling was also completed in areas where limited surface work had been done to date, but that exhibited similar geophysical signatures as known mineralization.

## 1.3.5 Historical Drill Core Sampling

In June of 2016, Red Pine started an extensive sampling program of drill core that was left un-sampled within approximately 42,000 m of historical drill core that was preserved and that had been selectively sampled in the Jubilee Shear Zone and virtually unsampled outside the Jubilee Shear Zone. It was evident from the review of

historical and recent drilling that many sampling gaps in the historical holes, used to estimate the 2015 Inferred Mineral Resource (Ronacher et al., 2015), existed. A total of 10,627 samples of previously un-sampled drill core were taken and 21,413 m of core was processed. The samples were processed with the same methodology and with the same QA/QC controls as is the current practice for new Red Pine drilling samples.

# **1.4 Data Verification**

For the QA/QC monitoring, Red Pine relied partly on the internal analytical QC measures implemented by SGS and Actlabs and implemented its own external analytical control measures consisting of the use of control samples (blanks, certified reference materials [CRMs]) inserted in all sample batches submitted for assaying. Umpire check assaying was not performed. The routine insertion rate for CRMs and blanks was 1 standard per 20 samples and 1 blank per 25 samples sent. Additional blanks were also inserted after vein samples when many specks of native gold were observed in the sampled vein. Red Pine also implemented a systematic check of the higher-grade samples analyzed by routine fire assay. Every sample containing gold equal or greater than 2 g/t gold on the fire assay was systematically re-analyzed by metallic screen fire assay. A total of 5,770 CRMs and blanks were analyzed; 5,311 were analyzed by Actlabs in their facilities in Timmins and Ancaster, and 459 were analyzed by SGS at their facilities in Cochrane and Lakefield. The verification sampling of recent drilling indicated a negative grade bias relative to the original assay. Verification sampling is a procedure to confirm the presence of the element(s) tested and in this case the bias is interpreted to reflect the nuggety character of the Au mineralization. The drilling, core logging, sampling, assay methodology, and QA/QC procedures are consistent with industry standards.

## 1.5 Mineral Processing and Metallurgical Testing

During the summer of 2019, Red Pine Exploration Inc. commissioned McClelland Laboratories Inc., located in Sparks, Nevada, to determine the amenability of gold mineralization in the Surluga and Minto Mine South deposits to Carbon in Leach (CIL) cyanidation and flotation treatment. The metallurgical study was conducted on a total of eleven (11) samples of quartered HQ drill core.

In the Surluga deposit, gold mineralization principally occurs as arrays of quartz veins of different thickness associated with pyrite (FeS2) as the main sulphide (pyrite-dominant mineralization). Accessory to absent pyrrhotite and arsenopyrite, and minor to absent chalcopyrite, occasional native gold, sphalerite and galena complete the main mineral assemblage. Pyrite-dominant mineralization is absent from the Minto Mine South deposit. In the Minto Mine South deposit, and in certain zones of the Surluga deposit, gold mineralization is associated with quartz-tourmaline veins with variable pyrite, accessory pyrrhotite, minor to trace chalcopyrite, common native gold and accessory to absent gold-bismuth alloys (e.g., maldonite – Au2Bi), native bismuth, and bismuthinite. A third style of gold mineralization has arsenopyrite (FeAsS) as the main sulphide (arsenopyrite-dominant). It occurs as variably preserved relicts in the resource of the Surluga deposit and is absent from the Minto Mine South deposit. Where observed in the Surluga deposit, it is formed of zones with extremely deformed arsenopyrite-bearing schists with or without strong quartz veining. Within the Surluga deposit, arsenopyrite-dominant mineralization tends to be spatially restricted to discrete zones and is more commonly blended as an accessory to minor components in larger zones formed by pyrite-dominant and Minto mineralization.

For the metallurgical study, three (3) samples from the Minto Mine South deposit were selected to characterize Minto mineralization. Five (5) samples were selected in the Surluga Deposit to represent a blend of pyritedominant with accessory to absent arsenopyrite-dominant mineralization to characterize the most likely metallurgical behavior of gold mineralization during production. Three (3) samples were also specifically selected to characterize the metallurgical behavior of primary arsenopyrite mineralization that is locally preserved in discrete zones of the Surluga Deposit.

The main observations from the metallurgical testing includes:

- CIL cyanidation and gravity recoverable gold average of 90.28% for representative blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization that is anticipated to form the bulk of the resource of the Surluga Deposit.
- Flotation and gravity recoverable gold average of 93.3% for the localized domains of arsenopyrite-dominant mineralization in the Surluga Deposit.
- CIL cyanidation and gravity recoverable gold average of 95.4% for Minto mineralization forming the Minto Mine South deposit and locally present in the Surluga Deposit.

The positive response of Surluga and Minto Mine South mineralization to conventional, industrially proven processes provides flexibility for project definition, design, and potential treatment of respective material types. A processing strategy involving Grinding/Gravity Concentration/Flotation/CIL is considered capable of yielding consistent Au extraction independent of the style of mineralization present. While the majority of recovered values would be as doré gold bullion, the marketability of a bi-product sulphide concentrate with payable gold is viewed as reasonable either at operations applying acid pressure oxidation, or regional smelters, both accessible by highway, or rail transport.

## 1.6 Development and Operations Status

The Project is in the exploration stage and is not currently being developed for commercial production. Discontinuous exploration and mining since the late 1800s has previously seen widespread stripping, trenching, and the sinking of shafts on the property. Past production from the various sites is provided in Section 6.

## 1.7 Mineral Resource Estimates

The Mineral Resource estimates and other information in this Item are forward-looking information. The factors that could cause actual results to differ materially from the forward-looking information include any significant differences from one or more of the following material factors or assumptions that were applied in drawing the conclusions or making the estimates, forecasts or projections set forth in this Item, including: **the accuracy of historical assay database**, the assumptions used by the QP to prepare the data for resource estimation, the highly structurally deformed nature of the deposit resulting in high grade variability, the presence of narrow Lamprophyre dykes that are typically barren but difficult to interpret, the interpretation of the controlling structural environment and mineral domain models, the selection of grade interpolation method, sample search and estimation parameters used for grade interpolation, treatment of high-grade outlier sample data, continuity of mineralization and factors used to determine reasonable prospects for economic extraction.

The Mineral Resource estimates have not been updated in this technical report due to the limited amount of exploration drilling conducted within the existing resource limits since the last estimate of Mineral Resources in 2019. On review of the new exploration data, the QP has determined that there would be no material change to the current Mineral Resource estimate as summarized in Item 1.7 and Item 14 of this report. Further review on the status of the Mineral Resource estimate is recommended on completion of the 2023 exploration program.

The Mineral Resource estimates for the Surluga and Minto deposits outlined in the following Items were derived from geological models and drill hole data provided by Red Pine, using a 3D block modelling approach in Datamine Studio RM (Datamine) software.

The Mineral Resource estimate is based upon data provided from surface diamond drilling, completed by Red Pine, along with historical drill hole data from previous owner/operators. The drill hole database cut-off dates were March 20, 2019 (Surluga), and October 2, 2018 (Minto). Approximately 84% of the samples were considered to be historical (legacy) data for the Surluga deposit and 11% for the Minto deposit.

For the Surluga deposit, three shear zone solids, consisting of Upper, Main, and Lower Jubilee shears were modelled by Red Pine and used to constrain mineralization in the model. For the purpose of grade estimation, all three shear zones were treated as a single mineral domain.

The Minto Mine South mineralization was modelled in two zones, consisting of a broad Shear Zone (Zone 1) and a narrow Vein Zone (Zone 2).

Three-dimensional (3D) block models were constructed for estimating Au grades based on Inverse Distance Cubed (ID<sup>3</sup>) interpolation. High-grade, outlier samples were controlled by top-cutting assay values.

A mean bulk density value of 2.75 tonnes per metre cubed (t/m<sup>3</sup>) was assigned to the Surluga deposit and 2.77 (t/m<sup>3</sup>) applied to the Minto Mine South deposit. Areas of historical mining from both deposits were depleted from the block model.

Cut-off grades of 2.7 g/t (Surluga) and 3.5 g/t (Minto) were selected for Mineral Resource reporting and represent approximate break-even mining costs for underground longhole and cut-and-fill mining, respectively. The QP notes that the long term gold price assumption used in 2019 is much lower than current market prices and recommends an update and reanalysis of the mining assumptions on completion of the 2023 exploration program.

Mineral Resources are not Mineral Reserves, and do not demonstrate economic viability. There is no certainty that all, or any part, of this Mineral Resource will be converted into Mineral Reserve. Inferred Resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Mineral Reserves.

Table 1-1 reports the Indicated and Inferred Mineral Resources for the Surluga Project. Mineral Resources were evaluated for mining continuity by reporting within a 2 g/t reporting envelope.

| Resource<br>Category | Tonnes    | Au Grade<br>(g/t) | Contained Au<br>(Oz) |
|----------------------|-----------|-------------------|----------------------|
| Indicated            | 1,202,000 | 5.31              | 205,000              |
| Total Indicated      | 1,202,000 | 5.31              | 205,000              |
| Inferred             | 2,362,000 | 5.22              | 396,000              |
| Total Inferred       | 2,362,000 | 5.22              | 396,000              |

#### Table 1-1: Surluga Mineral Resource Estimate (Effective Date May 31, 2019)

Notes:

1) All Mineral Resources reported at a 2.7 g/t Au cut-off from within a 2-g/t envelope.

2) A 2.7 g/t cut-off is supported for potential underground longhole mining by the following economic assumptions: Gold Price: US\$1,200,

Gold Recovery: 90%, Operating Expense (OPEX): CA\$125/tonne (\$85 mining, \$25 milling, \$15 G&A).

3) Tonnage estimates are rounded to the nearest 1,000 tonnes.

4) g/t – grams per tonne.

5) Ozs – troy ounces.

| Resource<br>Category | Tonnes  | Au Grade<br>(g/t) | Contained Au<br>(Oz) |
|----------------------|---------|-------------------|----------------------|
| Indicated            | 105,000 | 7.5               | 25,000               |
| Total Indicated      | 105,000 | 7.5               | 25000                |
| Inferred             | 354,000 | 6.6               | 75,000               |
| Total Inferred       | 354,000 | 6.6               | 75000                |

#### Table 1-2: Minto Mine South Mineral Resource Estimate (Effective Date November 7, 2018)

Notes:

1) All Mineral Resources reported at a 3.5 g/t Au cut-off.

A 3.5 g/t cut-off is supported by the following economic assumptions for potential underground cut-and-fill mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$160 / tonne (\$120 mining, \$25 milling, \$15 G&A).

3) Tonnage estimates are rounded to the nearest 1,000 tonnes.

4) g/t – grams per tonne.

5) Ozs – troy ounces.

| Table 1-3: Wawa | Gold Project | Combined Mineral | Resource Estimate |
|-----------------|--------------|------------------|-------------------|
|-----------------|--------------|------------------|-------------------|

| Deposit             | Resource<br>Category | Tonnes  | Au Grade<br>(g/t) | Contained Au<br>(Oz) |
|---------------------|----------------------|---------|-------------------|----------------------|
| Surluga             | Indicated            | 120,200 | 5.31              | 205,000              |
| Minto Mine<br>South | Indicated            | 10,500  | 7.50              | 25,000               |
| Total               | Indicated            | 130,700 | 5.47              | 230,000              |
| Surluga             | Inferred             | 236,200 | 5.22              | 396,000              |
| Minto Mine<br>South | Inferred             | 35,400  | 6.60              | 75,000               |
| Total               | Inferred             | 271,600 | 5.39              | 471,000              |

Notes:

 Surluga Mineral Resources reported at a 2.7 g/t cut-off from within a 2-g/t envelope. The 2.7 g/t cut-off is supported by the following economic assumptions for potential underground longhole mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$125 / tonne (\$85 mining, \$25 milling, \$15 G&A).

2) Minto Mineral Resources reported at a 3.5 g/t cut-off which is supported by the following economic assumptions for potential underground cut-and-fill mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$160 / tonne (\$120 mining, \$25 milling, \$15 G&A).

3) Tonnage estimates are rounded to the nearest 1,000 tonnes.

4) g/t – grams per tonne.

5) Ozs – troy ounces.

The QP confirms that there have been no material changes to the Surluga and Minto Mineral Resource estimates since the effective dates stated in the previous summary tables.

# **1.8 QP Conclusions and Recommendations**

## 1.8.1 Conclusions

## 1.8.1.1 QA/QC and Database

The Site Visit QP finds that the QA/QC protocols applied on the Wawa Gold Project are consistent with industry standards. Red Pine has not in the past used field duplicates but instead relied on lab QA/QC duplicates as part of the process. Red Pine has recently revised their QA/QC procedures to include ¼ core field duplicates of Minto Style, or Visible Gold (VG) mineralization. The QP suggests using a weighted average of the two assays as the official value for that sample interval.

There is poor to marginal precision with respect to verification sampling of current and historical core which is interpreted to be the result of the presence of coarse gold and volume variance between half core and quarter core samples. The QP recommends continuing to catalogue the rescued historical core. The QP recommends that Red Pine implement a program of verification sampling in the historical core where 4%-5% of core within the resource envelope are duplicate sampled (preferably field duplicate but as there is limited availability coarse reject is acceptable). This can be accomplished as part of an ongoing program funded by Phase 1 and 2 drilling budgets.

Future drilling samples should designate one side or the other of the cut line to reduce any bias.

## 1.8.1.2 Resource Conclusions

It is the Mineral Resource QP's opinion that the information presented in this Technical Report is representative of the Project, and based on the data verification completed, concludes that the sample database is of suitable quality to provide the basis of the conclusions and recommendations reached in this Technical Report.

The QP has taken reasonable steps to ensure the block model and Mineral Resource estimate are representative of the Red Pine data, but notes that there are risks related to the accuracy of the estimates related to the following:

- The accuracy and quality of the historical data
- The assumptions used by the QP to prepare the data for resource estimation
- The accuracy of the Red Pine shear zone interpretation
- The variable and structurally complex nature of the deposit geology
- The presence of Lamprophyre dykes that are difficult to model and are generally barren
- The impact of outlier grade data
- Estimation parameters used by the QP
- Parameters used to support reasonable prospects for potential economic extraction

For these and other reasons, actual results may differ materially from these estimates.

## 1.8.1.3 Metallurgical Conclusions

It is the Metallurgy QP's opinion that the samples used for metallurgical testing were representative of the styles of mineralization found in the Surluga and Minto Mine South deposits.

For the three (3) samples representative of Minto mineralization, CIL cyanidation and gravity recoverable gold average of 95.4%. For the five (5) samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization types in the Surluga Deposit, CIL cyanidation and gravity recoverable gold average of 90.3 %. The three (3) samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit yielded a range of CIL cyanidation and gravity recoveries between 48.9% to 78.2% (average of 61.2%).

Samples representative of the main zones of mineralization in the Surluga and Minto Mine South deposits were amenable to gravity recovery and bulk sulphide flotation at the 80%-75 µm feed size. For the three (3) samples representative of Minto mineralization, bulk sulphide flotation, and gravity recoverable gold averaged 95.6%. For the five (5) samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity recoverable gold averaged 86.6%. For the three (3) samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity recoverable gold averaged 93.3%.

Potential processing alternatives applicable to the Wawa Gold Project are suggested as including:

- i) Whole ore cyanidation applying CIL, which would be applicable to materials lower than a threshold sulphide and arsenopyrite concentration, which exhibited lower gold recoveries in test work.
- ii) Gravity concentration followed by sulphide flotation to a third cleaner concentrate, which would be applicable to all material types with products shipped to a third party for hydrometallurgical processing, or smelting.
- iii) A hybrid circuit involving gravity concentration, sulphide flotation to a third cleaner concentrate for shipment to a third party for hydrometallurgical processing or smelting, and CIL on the gravity concentrate and flotation tailings. This alternative would be expected as yielding highest possible Au recovery and would be applicable to all material types.
- iv) A circuit involving gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground concentrate and gravity concentrate. This alternative would also be expected as applicable to all material types, yielding reasonably high Au recovery and would require a smaller flotation circuit, and smaller cyanidation circuit.

## 1.8.2 Recommendations

## 1.8.2.1 Exploration

The QPs recommend a 50,000 tm drill program in two Phases (30,000 m and 20,000 m) to potentially extend the footprints of mineralization in different structures of the mineralized system and prioritizing exploration targets that are in the direct extensions of the structures hosting the deposits and within geological structures that are overlapping to adjacent with the existing deposits (Minto Mine Shear Zone, Minto B Shear Zone, Jubilee Shear Zone, Intrusion-related system + Orogenic overprint, Extensional vein systems (Surluga North, Sadowski, two unnamed vein systems).

Increase the confidence in the resource in selected areas of the existing deposits targeting gaps in the 2 g/t shell of the Surluga Deposit constraining the 2019 resource to improve the continuity of the higher-grade core of the deposit. Increase confidence in some of the model blocks classified as exploration potential in the 2019 resource into potentially an inferred resource. Continue the targeted validation of the historical results in the Jubilee Shear Zone where that validation work has not been completed yet.

A field and sampling program to identify new areas on the property with potential to host significant mineralization (approximately \$100,000).

Re-evaluation of the Mineral Resource estimate on completion of the 2023 exploration program to determine if updates are required based on new exploration data and historical core sampling, changes in geological interpretation, internal trade-off studies evaluating between potential open pit and underground mining methods, and economic criteria used to support reasonable prospects for potential economic extraction.

The cost of the proposed exploration program is estimated to be approximately \$19,004,500, as summarized in Table 1-4.

| Recommended Work                                                                                                                                  | Estimated Cost<br>\$CAD |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Phase 1                                                                                                                                           |                         |
| Diamond drilling (30,000m @ 335\$/m<br>including assaying, personnel, core<br>logging facility and logistics, Resource<br>Estimation update, PEA) | \$10,050,000            |
| Field mapping and sampling program                                                                                                                | \$100,000               |
| Overhead and corporate G&A                                                                                                                        | \$875,000               |
| Contingency 7%                                                                                                                                    | \$710,500               |
| Phase 1 Costs                                                                                                                                     | \$11,735,500            |
| Phase 2 (Recommendat                                                                                                                              | ions of PEA)            |
| Diamond drilling (20,000m @ 335\$/m<br>including assaying, personnel, core<br>logging facility and logistics)                                     | \$6,700,000             |
| Contingency 7%                                                                                                                                    | \$469,000               |
| Phase 2 Costs                                                                                                                                     | \$7,269,000             |
| Total Cost                                                                                                                                        | \$19,004,500            |

#### Table 1-4: Summary of Recommended Work Program

## 1.8.2.2 Metallurgical Recommendations

Previous metallurgical testwork, during 2019, on samples with elevated arsenopyrite were not indicative of an entirely refractory sulphide. The lower cyanidation recoveries on material and concentrate containing arsenopyrite would benefit from regrinding and intense cyanidation of a flotation rougher concentrate at a finer particle size in the order of 80% passing 10 microns.

Additional metallurgical testwork should be completed on the most challenging suite of mineralization, as well as material at naturally blended grade ranges that would be expected from underground mining. The most applicable

process flowsheet would balance the trade-off between CapEx, OpEx, metal recovery, with an overriding factor requiring a demonstrated and viable reclamation and closure plan for permitting.

A processing strategy not previously considered could involve gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground concentrate and gravity concentrate. This alternative would be expected as applicable to all material types, yielding reasonably high and consistent Au recovery, would require a smaller flotation circuit, as well as a smaller cyanidation circuit. Following cyanide removal from the sulphide concentrate residue, this process strategy lends itself towards sub-aqueous co-disposal of the sulphidic content in the feed, under a cap of benign low sulphide flotation tailings, to mitigate long term concerns with respect to ARD generation.

Additional work is required to fully characterize the distribution of the pyrite-dominant, Minto and arsenopyritedominant mineralization types to define metallurgical domains and approximate composition of the blend of mineralization styles in the Surluga Deposit. This can be achieved with the digitization of the sulphide assemblages recorded in the historical drill logs, and diamond drilling for targeted verification of historical data and for areas of the deposit where the sulphides assemblages were not historically recorded. Modern diamond drilling will also be required for the petrographic studies of arsenopyrite-dominant mineralization identified in historical logs located in zones without modern drilling.

Once this work is completed, additional metallurgical samples representative of the ranges of blends of mineralization types in the Surluga Deposit will be tested to further define and characterize the overall metallurgical behavior of higher-grade zones of the deposit. Additional metallurgical samples of the arsenopyrite-dominant mineralization will be pursued based on the textural attributes of arsenopyrite following petrographic work. This sampling will provide a better representation of the full range of metallurgical behavior of arsenopyrite-bearing mineralization based on the variable deportment of gold to support process flowsheet definition. A summary of recommendations is included as Table 1-5.

| Recommended Work                                                                                                                                                                                                                                                                                   | Estimated Cost<br>\$CAD |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Additional rougher flotation test work on three (3) separate composite samples representing low, medium and high As bearing material at expected nominal Au grades.                                                                                                                                | \$15,000                |
| Additional cyanidation testwork on the three (3) separate composites evaluating a rougher concentrate at 15% mass pull, reground to 80% passing 10 microns, including pre-aeration and lead nitrate addition.                                                                                      | \$25,000                |
| Completion of comparative process flowsheets and testwork on the three separate composites including whole ore cyanidation, flotation to a 3 <sup>rd</sup> Cleaner concentrate, and the hybrid flotation-CIL alternative to support project financial evaluations and process flowsheet selection. | \$25,000                |
| Completion of targeted TESCA TIMA (SEM) analysis to confirm the disposition<br>and deportment of residual Au values in process residues from six (6) separate<br>samples from testwork and the various process options.                                                                            | \$20,000                |
| Contingency 15%                                                                                                                                                                                                                                                                                    | \$15,000                |
| Total Cost                                                                                                                                                                                                                                                                                         | \$100,000               |

| Table 1-5: Summary of Recommended Metallurgical Testing Progra |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

# 2.0 INTRODUCTION

The Wawa Gold Project is a gold exploration project located near Wawa, Ontario, Canada. Red Pine holds a 100% interest in the Project after the March 2021 acquisition of Citabar.

This Technical Report was prepared for Red Pine and presents updated exploration data for the Project on the Surluga and Minto Mine South deposits. New exploration data for the project and additional drilling, trenching and surface mapping results for many of the mineralized structures of the Property. The majority of the new drilling is outside of the existing Surluga and Minto Mine South resource areas. There is minor new drilling inside the Surluga and Minto Mine South deposits from the 2020 to 2022 drill programs; however, as these were all exploration holes generally located outside the footprints of the existing resources and covering limited areas in the structures, there has been no material impact on the existing Mineral Resource estimate, which remains current.

The Mineral Resource estimates and Technical Report were prepared by WSP in conjunction with Haggarty Technical Services Corp. (Haggarty) for the metallurgical content. The Mineral Resources are disclosed in accordance with the Canadian Securities Administrators' National Instrument (NI) 43-101 and this Technical Report follows the requirements of Form 43-101F1. Mineral Resource estimates remain unchanged from the July 16, 2019, Technical Report titled National Instrument 43-101 Technical Report for the Wawa Gold Project.

Mineral Resource estimates were determined following the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines (November 2003) and were classified by following the CIM Definition Standards for Mineral Resources & Mineral Reserves (May 2014).

The Mineral Resource estimate and supporting data summarized in this Technical Report are considered by the QPs to meet the requirements of NI 43-101. The report effective date is of this Technical Report is May 1, 2023.

# 2.1 Source of Information

This Resource Estimate and Technical Report are based on information provided by Red Pine, including:

- Drill hole database consisting of:
  - Gold (Au) assays
  - Lithology, mineralogy, alteration, and structural descriptions
  - Collar coordinates and down-hole survey data
  - Bulk density measurements
- Assay certificates
- Jubilee Shear Zone interpretation
- Minto Shear Zone interpretation
- Diabase dyke interpretation
- Metallurgical study on the Surluga and Minto Mine South deposits completed by McClelland Laboratories Inc.

- Historical mine development voids
- Red Pine reports
- Red Pine standard operating procedures (SOPs)

Further sources of information, utilized by the authors, and references are listed in Item 3.0 and Item 27.0.

## 2.2 Qualified Persons and Site Inspection

The Mineral Resource and geology QPs for this Technical Report are Mr. Brian Thomas, P.Geo., and Mr. James McDonald, P.Geo., both are independent QPs, as defined under NI 43-101 and employees of WSP. The QP for metallurgy is Mr. Steve Haggarty, P.Eng., an independent QP, as defined under NI 43-101 and an employee of Haggarty Technical Services. Please refer to the Date and Signature page (page ii) of this Technical Report for further details.

A QP personal site inspection of the Project was last conducted by James McDonald between October 25, 2022, and October 26, 2022, in order to observe site conditions, review geological data collection and QA/QC procedures and results, confirm drill collar locations, and complete verification sampling and logging of drill core.

Mr. Steve Haggarty, the QP for the metallurgy, personally inspected the site on May 25, 2023, and visually inspected remnant and current drill core characteristic of the deposit.

## 2.2.1 Acknowledgements

WSP and Red Pine would like to acknowledge the following contributors to the preparation of this Technical Report and the underlying studies under the supervision of the QPs, including; Jean-François Montreuil, P.Geo., Ph.D., and Eric Steffler of Red Pine, as well as, Greg Warren of WSP for his contributions to the block modelling and grade estimation procedures, Jerry DeWolfe, P.Geo., of WSP for peer reviews, and William Kyle, of WSP, for his contributions to editing, formatting, and compilation.

# 2.3 Units of Measure and Abbreviations

| Capital expenditure                              | CAPEX             |
|--------------------------------------------------|-------------------|
| Centimetre                                       | cm                |
| Copper                                           | Cu                |
| Cubic centimetre                                 | cm <sup>3</sup>   |
| Cubic metre                                      | m <sup>3</sup>    |
| Degree                                           | 0                 |
| Degrees Celsius                                  | °C                |
| Gamma (1 x 10 <sup>-9</sup> Tesla = 1 nanoTesla) | Y                 |
| Gold                                             | Au                |
| Gold grams per million tonnes                    | gAu/mt            |
| Gram                                             | g                 |
| Grams per tonne                                  | g/t               |
| Greater than                                     | >                 |
| Foot (0.3048 metres)                             | ft                |
| Hectare (10,000 m <sup>2</sup> )                 | ha                |
| Internal rate of return                          | IRR               |
| Kilogram                                         | kg                |
| Kilograms per cubic metre                        | kg/m <sup>3</sup> |
| Kilograms per square metre                       | kg/m²             |
| Kilometre                                        | km                |
| Less than                                        | <                 |
| Magnetotellurics Geophysical Survey              | MT                |
| Metre                                            | m                 |
| Metres above sea level                           | m asl             |
| Mile (1.609344 kilometers)                       | mi                |
| Millimetre                                       | mm                |
| Million                                          | М                 |
| Million tonnes                                   | Mt                |
| Million tonnes per annum                         | Mtpa              |
| nanoTesla                                        | nT                |
| Operating expense                                | OPEX              |
| Ounce (troy ounce, 31.1035 grams)                | oz                |
| Ounce per short ton (34.2857 grams per tonne)    | oz/t              |
| Percent                                          | %                 |
| Pound(s)                                         | lb                |
| Parts per million                                | ppm               |
| Parts per billion                                | ppb               |
| Relative Percentage Difference                   | RPD               |
| Square kilometer                                 | km <sup>2</sup>   |
| Square metre                                     | m²                |
| Short Tons (907 kgs)                             | tons              |
| Silver                                           | Ag                |
| Silver grams per million tonnes                  | gAg/mt            |
| Tonnes (1000 kgs)                                | t                 |
| Ionnes per day                                   | t/d               |
| United States Dollars in Millions                | US\$M             |
| Universal Transverse Mercator                    | UTM               |
| Zinc                                             | Zn                |

# 3.0 RELIANCE ON OTHER EXPERTS

For certain items in this Technical Report the QPs have relied on a report, opinion, or statement of another expert who is not a QP, or on information provided by Red Pine, concerning legal, political, environmental, or tax matters relevant to the Technical Report. In each case, the QPs hereby disclaim responsibility for such information to the extent of his/her reliance on such reports, opinions, or statements. This reliance applies to all information provided by Red Pine for Item 4.1 (Ownership), Item 4.2 (Property Land Tenure), Item 4.3 (Permits and Authorization), and Item 4.4 (Environmental Considerations) of this Report. The QPs have relied upon fully and believe there is a reasonable basis for this reliance on, information provided by Red Pine regarding mineral tenure, surface rights, ownership details, royalties, environmental obligations, and applicable legislation relevant to the Project. The QPs have not independently verified the information in these sub-Items and have fully relied upon, and disclaimed responsibility for, information provided by Red Pine in these sub-Items.
# 4.0 **PROPERTY DESCRIPTION AND LOCATION**

The Project is located 2 km east of the Town of Wawa, Ontario and approximately 650 km northwest of Toronto (Figure 4-1). The Project is within McMurray Township (NTS 41/N15). The property is centered on UTM NAD83 (Zone 16N) 669,800 m E and 5,315,000 m N. Legal access is available via Highway 101 from Wawa and the Surluga Mine Road, a private road owned and maintained by Red Pine.

# 4.1 Ownership

On December 10, 2014, Red Pine entered into an assignment and assumption agreement (the "Assumption Agreement") with Citabar Limited Partnership ("Citabar") and Augustine Ventures Inc. ("Augustine"), pursuant to which, among other things, Citabar and Augustine agreed to amend the Surluga Property Option Agreement dated April 16, 2009, as amended, between Augustine and Citabar to permit Red Pine to earn up to a 45% interest in the Project in exchange for Red Pine assuming certain obligations of Augustine. Effective August 15, 2015, Red Pine acquired a 30% interest in the Project pursuant to the terms of the Assumption Agreement and the joint venture agreement between Citabar, Red Pine and Augustine became effective (the "Joint Venture Agreement"). A copy of the Joint Venture Agreement is appended as a schedule to the Assumption Agreement. As of the effective date of the Joint Venture Agreement, the initial participating interests in the Project were divided as follows: 40% owned by Citabar, 30% owned by Augustine and 30% owned by Red Pine.

On February 3, 2017, Red Pine announced that it had completed the acquisition of all the outstanding shares of Augustine by way of a plan of arrangement under the Business Corporations Act (Ontario) (the "Arrangement") and pursuant to an arrangement agreement between Red Pine and Augustine dated November 14, 2016 (the "Arrangement Agreement"). As a result of the completion of the Arrangement, Augustine became a wholly owned subsidiary of Red Pine and Red Pine beneficially acquired Augustine's 30% interest in the Project, such that it then held an aggregate 60% interest in the Project.

On March 30, 2021, Red Pine announced that it had completed the acquisition of the partnership interests in Citabar (the "Citabar Acquisition") pursuant to a securities purchase agreement (the "Purchase Agreement") with the holders of such partnership interests dated February 22, 2021. Immediately prior to the completion of the Citabar Acquisition, Red Pine held a 63.31% interest in the Project; the additional 3.31% of the Project was acquired by Red Pine as a result of Citabar suffering dilution of its interest after electing not to fund certain portions of the exploration programs under the Joint Venture Agreement. As a result of the completion of the Citabar Acquisition, Red Pine now holds a 100% interest in the Project.

Copies of the Assumption Agreement, the Joint Venture Agreement and the Purchase Agreement can be found under Red Pine's SEDAR profile on www.sedar.com. A copy of the Arrangement Agreement can be found under Augustine's SEDAR profile. The descriptions of these agreements contained herein are qualified in their entirety by the full text of these agreements. The reader is encouraged to refer to the agreements for further information.

# 4.2 Property Land Tenure

The Project consists of 301 unpatented and 122 patented or leased mining claims, totaling 7,031 Ha. Red Pine owns the surface rights for 5 of the 17 leases and 7 unpatented mining claims just west of the Surluga Deposit. Red Pine does not hold the surface rights for any other unpatented or leased mining claims, surface rights are held by the Crown, various Townships and Municipalities, and private individuals (Figure 4-2, Figure 4-3, and Table 4-1, Table 4-2, and Table 4-3, respectively). The unpatented and patented or and leased mining claims are in good standing and are contingent upon applicable taxes being paid to the Municipality of Wawa or the Ministry

of Natural Resources and Forestry of Ontario (MNRF), which Red Pine continues to do, as mandated in the claim's terms and conditions. A list of patents, or leases, with tax obligations are listed in Table 4-1, Table 4-2, and Table 4-3, respectively. A list of unpatented mining claims in good standing and Net Smelter Returns (NSRs) are listed inpe Table 4-4. The obligations to maintain the property for 2023 amount to, Mining Land Tax: \$5,475.69, Municipal Tax: \$67,393.93, MNRF Tenant Tax: \$18,749.82 and Lease Rents: \$2,369.26. The regulator work obligations for unpatented (Cell) claims amount to \$89,200.00.

NSRs are payable to the parties indicated in Table 4-4. All the other components of the land tenure are free of outstanding NSR. 1.5% of the 2% NSR granted to an affiliate of the Vendors (874253 Ontario Limited and the estate of Bernard Sherman) is subject to a buyback for a total cost of \$1,750,000.



Figure 4-1: Location of Red Pine's Wawa Gold Project



Figure 4-2: North Claim Map Showing the Patents and Claims of the Wawa Gold Project



Figure 4-3: South Claim Map Showing the Patents and Claims of the Wawa Gold Project

| т                      | enure ID                         |            |                     |    |    |                                                     | Municipal Tax    |                             | 2022 MNR Tenant Tax                            |        |
|------------------------|----------------------------------|------------|---------------------|----|----|-----------------------------------------------------|------------------|-----------------------------|------------------------------------------------|--------|
| Claim ID               | PIN                              | MLAS ID    | Tenure Type         | SR | MR | Holder                                              | Roll #           | 2022 Municipal Taxes        | (for reimbursement of<br>2019 Municipal taxes) | Status |
| SSM76721               | 31169-0199                       | LEA-107320 | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632700.0000 | Paid Through MNR Tenant Tax | \$<br>1,909.43                                 | Active |
| SSM407822              | 31169-0201                       | LEA-107487 | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631201.0000 | Paid Through MNR Tenant Tax | \$<br>1,465.37                                 | Active |
| SSM321118              | 31169-0202<br>and 31169-<br>0265 | LEA-107487 | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632601.0000 | Paid Through MNR Tenant Tax | \$<br>1,398.77                                 | Active |
| SSM59663               | 31169-0203                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623900.0000 | Paid Through MNR Tenant Tax | \$<br>674.96                                   | Active |
| SSM61531               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623901.0000 | Paid Through MNR Tenant Tax | \$<br>732.69                                   | Active |
| SSM61958               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623902.0000 | Paid Through MNR Tenant Tax | \$<br>2,619.91                                 | Active |
| SSM61959               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623903.0000 | Paid Through MNR Tenant Tax | \$<br>1,820.62                                 | Active |
| SSM61963               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623904.0000 | Paid Through MNR Tenant Tax | \$<br>1,731.81                                 | Active |
| SSM61965               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623905.0000 | Paid Through MNR Tenant Tax | \$<br>888.11                                   | Active |
| SSM61966               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623906.0000 | Paid Through MNR Tenant Tax | \$<br>630.55                                   | Active |
| SSM61967               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623907.0000 | Paid Through MNR Tenant Tax | \$<br>2,797.53                                 | Active |
| SSM61968               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623908.0000 | Paid Through MNR Tenant Tax | \$<br>1,731.81                                 | Active |
| SSM61971               | 31169-0204                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623909.0000 | Paid Through MNR Tenant Tax | \$<br>2,619.91                                 | Active |
| SSM61972               | 31169-0205                       | LEA107760  | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623910.0000 | Paid Through MNR Tenant Tax | \$<br>666.08                                   | Active |
| SSM433 (JL105)         | 31169-0270                       | PAT-784    | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001612900.0000 | \$<br>637.65                | Not Applicable                                 | Active |
| SSM3090 (part of Y110) | 31169-0648                       | PAT-551    | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001613100.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3089 (part of Y110) | 31169-0648                       | PAT-551    | Lease               | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001613900.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM4020 (part of Y110) | 31169-0648                       | PAT-551    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001622900.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3531 (part of Y110) | 31169-0648                       | PAT-551    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623000.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3555 (part of WR61) | 31169-0648                       | PAT-570    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001614000.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3556 (part of WR61) | 31169-0648                       | PAT-570    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001614800.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3557 (part of WR61) | 31169-0648                       | PAT-570    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001622000.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3558(part of WR61)  | 31169-0648                       | PAT-570    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001621900.0000 | \$<br>743.28                | Not Applicable                                 | Active |
| SSM3232                | 31169-0648                       | PAT-562    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001621200.0000 | \$<br>777.24                | Not Applicable                                 | Active |
| SSM3256                | 31169-0648                       | PAT-563    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001621400.0000 | \$<br>723.88                | Not Applicable                                 | Active |
| SSM3231                | 31169-0648                       | PAT-561    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001621500.0000 | \$<br>762.68                | Not Applicable                                 | Active |
| SSM3678                | 31169-0304                       | PAT-434    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001621700.0000 | \$<br>728.72                | Not Applicable                                 | Active |
| SSM4507                | 31169-0648                       | PAT-550    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001622600.0000 | \$<br>704.49                | Not Applicable                                 | Active |
| SSM3193                | 31169-0648                       | PAT-548    | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001622700.0000 | \$<br>777.24                | Not Applicable                                 | Active |

#### Table 4-1: List of Surface Rights Taxes on Leases and Patents (for Municipality of Wawa and MNRF Tenant Tax)

| т                 | enure ID   |                   |                     |    |    |                                                     | Musiciant        |                      | 2022 MNR Tenant Tax                            |        |
|-------------------|------------|-------------------|---------------------|----|----|-----------------------------------------------------|------------------|----------------------|------------------------------------------------|--------|
| Claim ID          | PIN        | MLAS ID           | Tenure Type         | SR | MR | Holder                                              | Roll #           | 2022 Municipal Taxes | (for reimbursement of<br>2019 Municipal taxes) | Status |
| SSM3192           | 31169-0648 | PAT-547           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001622800.0000 | \$<br>743.28         | Not Applicable                                 | Active |
| SSM3191           | 31169-0648 | PAT-546           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623100.0000 | \$<br>748.11         | Not Applicable                                 | Active |
| SSM3194           | 31169-0648 | PAT-549           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623200.0000 | \$<br>767.51         | Not Applicable                                 | Active |
| SSM3108           | 31169-0289 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623400.0000 | \$<br>805.27         | Not Applicable                                 | Active |
| SSM3107           | 31169-0289 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623500.0000 | \$<br>772.35         | Not Applicable                                 | Active |
| SSM3538 (SSM4720) | 31169-0648 | PAT-554           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623600.0000 | \$<br>777.24         | Not Applicable                                 | Active |
| SSM4318 (SSM7492) | 31169-0649 | PAT-553           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001623800.0000 | \$<br>767.51         | Not Applicable                                 | Active |
| SSM3105           | 31169-0289 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624000.0000 | \$<br>733.56         | Not Applicable                                 | Active |
| SSM3106           | 31169-0289 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624200.0000 | \$<br>695.85         | Not Applicable                                 | Active |
| SSM3104           | 31169-0289 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624300.0000 | \$<br>748.11         | Not Applicable                                 | Active |
| SSM4317           | 31169-0648 | PAT-552           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624500.0000 | \$<br>1,006.85       | Not Applicable                                 | Active |
| SSM59662          | 31169-1824 | PAT-572           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624600.0000 | \$<br>10,138.82      | Not Applicable                                 | Active |
| SSM3407           | 31169-0649 | PAT-567           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624700.0000 | \$<br>657.04         | Not Applicable                                 | Active |
| SSM3130           | 31169-0649 | PAT-555           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624800.0000 | \$<br>595.06         | Not Applicable                                 | Active |
| SSM3408           | 31169-0649 | PAT-568           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001624900.0000 | \$<br>819.83         | Not Applicable                                 | Active |
| SSM3400           | 31169-0649 | PAT-564           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001625000.0000 | \$<br>910.90         | Not Applicable                                 | Active |
| SSM3455           | 31169-0649 | PAT-569           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001625100.0000 | \$<br>930.30         | Not Applicable                                 | Active |
| SSM60942          | 31169-1809 | PAT-571           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001625200.0000 | \$<br>910.90         | Not Applicable                                 | Active |
| SSM3401           | 31169-0649 | PAT-565           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001625500.0000 | \$<br>863.47         | Not Applicable                                 | Active |
| SSM4678           | 31169-0315 | PAT-817           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001625600.0000 | \$<br>561.10         | Not Applicable                                 | Active |
| SSM61530          | 31169-0212 | LEA-108851        | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001626002.0000 | \$<br>863.47         | Not Applicable                                 | Active |
| SSM3378           | 31169-0308 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629400.0000 | \$<br>1,031.08       | Not Applicable                                 | Active |
| SSM3379           | 31169-0308 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629500.0000 | \$<br>983.65         | Not Applicable                                 | Active |
| SSM4316           | 31169-0318 | PAT-28102         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629600.0000 | \$<br>1,006.85       | Not Applicable                                 | Active |
| SSM3133           | 31169-0649 | PAT-558           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629700.0000 | \$<br>853.75         | Not Applicable                                 | Active |
| SSM3134           | 31169-0649 | PAT-559           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629800.0000 | \$<br>878.02         | Not Applicable                                 | Active |
| SSM469257         | 31169-0215 | LEA-109445        | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001629900.0000 | \$<br>699.64         | Not Applicable                                 | Active |
| SSM430258         | 31169-0216 | LEA-109445        | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630050.0000 | \$<br>546.53         | Not Applicable                                 | Active |
| SSM3307           | 31169-0308 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630000.0000 | \$<br>959.41         | Not Applicable                                 | Active |
| SSM3406           | 31169-0649 | PAT-566           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630100.0000 | \$<br>681.28         | Not Applicable                                 | Active |
| SSM3135           | 31169-0649 | PAT-560           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630200.0000 | \$<br>944.86         | Not Applicable                                 | Active |

| т            | enure ID   |                   |                     |    |    |                                                     |                         |                      | 2022 MNR Tenant Tax                            |        |
|--------------|------------|-------------------|---------------------|----|----|-----------------------------------------------------|-------------------------|----------------------|------------------------------------------------|--------|
| Claim ID     | PIN        | MLAS ID           | Tenure Type         | SR | MR | Holder                                              | Municipal Tax<br>Roll # | 2022 Municipal Taxes | (for reimbursement of<br>2019 Municipal taxes) | Status |
| SSM3132      | 31169-0649 | PAT-557           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630300.0000        | \$<br>848.90         | Not Applicable                                 | Active |
| SSM3131      | 31169-0649 | PAT-556           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630400.0000        | \$<br>608.53         | Not Applicable                                 | Active |
| SSM3306      | 31169-0307 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630600.0000        | \$<br>878.02         | Not Applicable                                 | Active |
| SSM3129      | 31169-0284 | PAT-28075         | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630700.0000        | \$<br>814.95         | Not Applicable                                 | Active |
| SSM3124      | 31169-0284 | PAT-28074         | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001630800.0000        | \$<br>959.41         | Not Applicable                                 | Active |
| SSM60        | 31169-0274 | PAT-679           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631000.0000        | \$<br>800.43         | Not Applicable                                 | Active |
| SSM4142      | 31169-0305 | PAT-682           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631100.0000        | \$<br>757.83         | Not Applicable                                 | Active |
| SSM4192      | 31169-0309 | PAT-677           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631200.0000        | \$<br>642.49         | Not Applicable                                 | Active |
| ES170        | 31169-0268 | PAT-676           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631300.0000        | \$<br>647.32         | Not Applicable                                 | Active |
| SSM4141      | 31169-0306 | PAT-681           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631400.0000        | \$<br>757.83         | Not Applicable                                 | Active |
| SSM58        | 31169-0276 | PAT-785           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631500.0000        | \$<br>652.17         | Not Applicable                                 | Active |
| SSM3047      | 31169-0281 | PAT-653           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631600.0000        | \$<br>647.32         | Not Applicable                                 | Active |
| SSM3136      | 31169-0283 | PAT-654           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631700.0000        | \$<br>632.77         | Not Applicable                                 | Active |
| SSM7921      | 31169-0341 | PAT-678           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001631900.0000        | \$<br>570.78         | Not Applicable                                 | Active |
| Y462         | 31169-0872 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632100.0000        | \$<br>603.70         | Not Applicable                                 | Active |
| Y461         | 31169-0872 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632200.0000        | \$<br>661.89         | Not Applicable                                 | Active |
| SSM3565      | 31169-0297 | PAT-680           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632300.0000        | \$<br>657.04         | Not Applicable                                 | Active |
| SSM3566      | 31169-0297 | PAT-683           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632400.0000        | \$<br>777.24         | Not Applicable                                 | Active |
| SSM65 (JD16) | 31169-0273 | PAT-684           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001632500.0000        | \$<br>748.11         | Not Applicable                                 | Active |
| SSM2583      | 31169-0549 | PAT-433           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001638700.0000        | \$<br>632.77         | Not Applicable                                 | Active |
| SSM7389      | 31169-0872 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001638900.0000        | \$<br>570.78         | Not Applicable                                 | Active |
| SSM4390      | 31169-0316 | PAT-435           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639200.0000        | \$<br>632.77         | Not Applicable                                 | Active |
| SSM4391      | 31169-0317 | PAT-431           | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639300.0000        | \$<br>652.17         | Not Applicable                                 | Active |
| SSM886       | 31169-0272 | PAT-28072         | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639400.0000        | \$<br>681.28         | Not Applicable                                 | Active |
| SSM3470      | 31169-0872 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639600.0000        | \$<br>844.07         | Not Applicable                                 | Active |
| Y463         | 31169-0872 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639700.0000        | \$<br>666.73         | Not Applicable                                 | Active |
| SSM3109      | 31169-0286 | PAT-28073         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639800.0000        | \$<br>882.86         | Not Applicable                                 | Active |
| SSM3471      | 31169-0295 | PAT-28078         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639900.0000        | \$<br>949.69         | Not Applicable                                 | Active |
| SSM2403      | 31169-0280 | PAT-28099         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640100.0000        | \$<br>623.09         | Not Applicable                                 | Active |
| SSM2401      | 31169-0280 | PAT-28097         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640200.0000        | \$<br>786.92         | Not Applicable                                 | Active |
| SSM2402      | 31169-0280 | PAT-28098         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640300.0000        | \$<br>623.09         | Not Applicable                                 | Active |

| т             | enure ID   |                   |                     |    |    |                                                     |                         |                      | 2022 MNR Tenant Tax                            |        |
|---------------|------------|-------------------|---------------------|----|----|-----------------------------------------------------|-------------------------|----------------------|------------------------------------------------|--------|
| Claim ID      | PIN        | MLAS ID           | Tenure Type         | SR | MR | Holder                                              | Municipal Tax<br>Roll # | 2022 Municipal Taxes | (for reimbursement of<br>2019 Municipal taxes) | Status |
| M1052 (DJ7)   | 31169-0255 | PAT-518           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640400.0000        | \$<br>959.41         | Not Applicable                                 | Active |
| SSM3301       | 31169-0295 | PAT-28076         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640600.0000        | \$<br>647.32         | Not Applicable                                 | Active |
| SSM3493       | 31169-0285 | PAT-28079         | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640700.0000        | \$<br>637.65         | Not Applicable                                 | Active |
| R738 (SSM253) | 31169-0642 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641000.0000        | \$<br>738.43         | Not Applicable                                 | Active |
| M968 (DJ8)    | 31169-0255 | PAT-519           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641100.0000        | \$<br>748.11         | Not Applicable                                 | Active |
| SSM4392       | 31169-0317 | PAT-432           | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001645800.0000        | \$<br>647.32         | Not Applicable                                 | Active |
| SSM176        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640800.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM177        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641200.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM182        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641300.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM183        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640500.0000        | \$ 17,020.27         | Not Applicable                                 | Active |
| SSM191        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644300.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM194        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001640900.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM195        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641400.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM201        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644900.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM212        | 31169-0695 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001639000.0000        | \$<br>652.17         | Not Applicable                                 | Active |
| SSM224        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644100.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM241        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644000.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM242        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001643800.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM243        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001643900.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM244        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001643600.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM245        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001643700.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM246        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001642600.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM247        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001642100.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM248        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001642000.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM249        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641600.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM250        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641700.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM252        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001642400.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM138        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644200.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM139        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001644400.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM140        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641800.0000        | \$<br>-              | Not Applicable                                 | Active |
| SSM141        | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641900.0000        | \$<br>-              | Not Applicable                                 | Active |

| т        | enure ID   |                   |                     |    |    |                                                     | Municipal Tax    |                      | 2022 MNR Tenant Tax                            |        |
|----------|------------|-------------------|---------------------|----|----|-----------------------------------------------------|------------------|----------------------|------------------------------------------------|--------|
| Claim ID | PIN        | MLAS ID           | Tenure Type         | SR | MR | Holder                                              | Roll #           | 2022 Municipal Taxes | (for reimbursement of<br>2019 Municipal taxes) | Status |
| SSM258   | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001641500.0000 | \$<br>-              | Not Applicable                                 | Active |
| SSM259   | 31169-0643 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001642500.0000 | \$<br>-              | Not Applicable                                 | Active |
| SSM261   | 31169-0695 | Not<br>Applicable | Fee Simple Absolute | Y  | N  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001638100.0000 | \$<br>709.32         | Not Applicable                                 | Active |
| SSM262   | 31169-0695 | Not<br>Applicable | Fee Simple Absolute | Y  | Y  | (60%) RED PINE EXPLORATION INC., (40%) WAWA GP INC. | 00001638200.0000 | \$<br>598.85         | Not Applicable                                 | Active |
| SSM3492  | 31169-0293 | PAT-775           | Fee Simple Absolute | Y  | Y  | 100% RED PINE EXPLORATION INC.                      | 00001645000.0000 | \$<br>780.58         | Not Applicable                                 | Active |
| SSM3809  | 31169-0302 | PAT-776           | Fee Simple Absolute | Y  | Y  | 100% RED PINE EXPLORATION INC.                      | 00001645600.0000 | \$<br>590.20         | Not Applicable                                 | Active |
| SSM3810  | 31169-0302 | PAT-777           | Fee Simple Absolute | Y  | Y  | 100% RED PINE EXPLORATION INC.                      | 00001645700.0000 | \$<br>262.74         | Not Applicable                                 | Active |

#### Table 4-2: List of Lease Rent Obligations (MNDM)

|                                                           |        |           | Tenure ID                        |            | Topuro |    |    | MNDM     | MNDM           | MNDM<br>Lease          | Annual Bont      |                   |
|-----------------------------------------------------------|--------|-----------|----------------------------------|------------|--------|----|----|----------|----------------|------------------------|------------------|-------------------|
| Leasee                                                    | Status | Claim ID  | PIN                              | MLAS ID    | Туре   | SR | MR | Account  | Sub<br>Account | Rent<br>(per<br>lease) | Due Date         | Lease Expiry Date |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61530  | 31169-0212                       | LEA-108851 | Lease  | Y  | Y  | LA**0090 | 0002           | \$<br>43.83            | August 1, 2022   | July 31, 2032     |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM469257 | 31169-0215                       | LEA-109445 | Lease  | Y  | Y  | LA**0071 | 0004           | \$                     | June 1, 2022     | May 31, 2033      |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM430258 | 31169-0216                       | LEA-109445 | Lease  | Y  | Y  | LA**0071 | 0004           | 111.69                 |                  | ,,                |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM76721  | 31169-0199                       | LEA-107320 | Lease  | Y  | Y  | LA**0065 | 0001           | \$<br>52.11            | May 1, 2022      | April 30, 2042    |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM321118 | 31169-0202<br>and 31169-<br>0265 | LEA-107487 | Lease  | Y  | Y  | LA**0065 | 0002           | \$<br>45.31            | February 1, 2023 | January 30, 2025  |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM407822 | 31169-0201                       | LEA-107487 | Lease  | Y  | Y  | LA**0065 | 0002           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM59663  | 31169-0203                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61531  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61958  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61959  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61963  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61965  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           | \$<br>486.61           | June 1, 2022     | May 31, 2026      |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61966  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           | -                      |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61967  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           | -                      |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61968  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           | 4                      |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61971  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           | 4                      |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61972  | 31169-0204                       | LEA-107760 | Lease  | Y  | Y  | LA**0079 | 0001           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM469255 | 31169-0217                       | LEA-109446 | Lease  | N  | Y  | LA**0071 | 0003           | \$                     | June 1, 2022     | May 31, 2033      |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM469256 | 31169-0217                       | LEA-109446 | Lease  | N  | Y  | LA**0071 | 0003           | 64.24                  |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM59664  | 31169-0205                       | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           | -                      |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM60183  | 31169-0205                       | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM60184  | 31169-0205                       | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           | ې<br>957.53            | June 1, 2022     | May 31, 2026      |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM60185  | 31169-0205                       | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                  |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM60362  | 31169-0205                       | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                  |                   |

|                                                           |        |           | Tenure ID  |            | Topuro |    |    | MNDM     | MNDM           | MNDM<br>Lease          | Annual Bont         |                   |
|-----------------------------------------------------------|--------|-----------|------------|------------|--------|----|----|----------|----------------|------------------------|---------------------|-------------------|
| Leasee                                                    | Status | Claim ID  | PIN        | MLAS ID    | Туре   | SR | MR | Account  | Sub<br>Account | Rent<br>(per<br>lease) | Due Date            | Lease Expiry Date |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM60363  | 31169-0205 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61532  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61533  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61954  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61955  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61956  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61960  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61961  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61962  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61964  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61969  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61970  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64595  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64702  | 31169-0207 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64934  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64955  | 31169-0206 | LEA-107761 | Lease  | N  | Y  | LA**0079 | 0002           |                        |                     |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM542856 | 31160-0200 | LEA-107417 | Lease  | N  | Y  | LA**0071 | 0001           | \$<br>27.97            | August 1, 2022      | July 31, 2023     |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM61957  | 31160-0211 | LEA-108852 | Lease  | N  | Y  | LA**0090 | 0001           | \$<br>46.01            | August 1, 2022      | July 31, 2032     |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64704  | 31169-0194 | LEA-108916 | Lease  | N  | Y  | LA**0029 | 0001           | \$<br>51.19            | December 1,<br>2022 | November 30, 2032 |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64705  | 31169-0193 | LEA-108915 | Lease  | N  | Y  | LA**0029 | 0002           | \$<br>61.12            | December 1,<br>2022 | November 30, 2032 |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64703  | 31169-0195 | LEA-108914 | Lease  | N  | Y  | LA**0029 | 0003           | \$<br>23.27            | December 1,<br>2022 | November 30, 2032 |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64700  | 31169-0196 | LEA-108913 | Lease  | N  | Y  | LA**0029 | 0004           | \$<br>59.09            | December 1,<br>2022 | November 30, 2032 |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64701  | 31169-0197 | LEA-108912 | Lease  | N  | Y  | LA**0029 | 0005           | \$<br>48.17            | December 1,<br>2022 | November 30, 2032 |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM64706  | 31169-0198 | LEA-108943 | Lease  | N  | Y  | LA**0029 | 0006           | \$<br>48.17            | February 1, 2023    | January 31, 2033  |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM581686 | 31169-0210 | LEA-108502 | Lease  | N  | Y  | LA**0071 | 0002           | \$<br>3.62             | February 1, 2023    | January 31, 2031  |

|                                                           |        |           | Tenure ID  |            | Tenure |    |    | MNDM     | MNDM           | MNDM<br>Lease          | Annual Rent |                   |
|-----------------------------------------------------------|--------|-----------|------------|------------|--------|----|----|----------|----------------|------------------------|-------------|-------------------|
| Leasee                                                    | Status | Claim ID  | PIN        | MLAS ID    | Туре   | SR | MR | Account  | Sub<br>Account | Rent<br>(per<br>lease) | Due Date    | Lease Expiry Date |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM430232 | 31169-0213 | LEA-108850 | Lease  | N  | Y  | LA**0079 | 0003           |                        |             |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM430233 | 31169-0214 | LEA-108850 | Lease  | N  | Y  | LA**0079 | 0003           | Ś                      |             |                   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM430234 | 31169-0214 | LEA-108850 | Lease  | N  | Y  | LA**0079 | 0003           | 239.33                 | ******      | August 31, 2032   |
| (196462) RED PINE EXPLORATION INC., (409536) WAWA GP INC. | Active | SSM430235 | 31169-0214 | LEA-108850 | Lease  | N  | Y  | LA**0079 | 0003           |                        |             |                   |

#### Table 4-3: List of Mining Tax Obligations (MNDM)

| Owner                         | Status | MLAS ID | PIN        | Tenure Type         | SR | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------|------------|---------------------|----|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-784 | 31169-0270 | Fee Simple Absolute | Y  | Y  | A***0148        | 0001                   | \$<br>35.11             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-551 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0006                   |                         |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-551 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0006                   | \$                      |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-551 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0006                   | 259.00                  |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-551 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0006                   |                         |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-570 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0025                   |                         |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-570 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0025                   | \$                      |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-570 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0025                   | 259.00                  |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-570 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0025                   |                         |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-562 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0017                   | \$<br>74.95             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-563 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0018                   | \$<br>59.89             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-561 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0016                   | \$<br>70.74             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-434 | 31169-0304 | Fee Simple Absolute | Y  | Y  | A***0026        | 0004                   | \$<br>60.54             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-550 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0005                   | \$<br>54.55             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-548 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0003                   | \$<br>74.95             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-547 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0002                   | \$<br>65.24             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-546 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0001                   | \$<br>66.69             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-549 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0004                   | \$<br>72.04             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-554 | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0009                   | \$<br>75.11             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-553 | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0008                   | \$<br>71.22             |

| Owner                         | Status | MLAS ID       | PIN        | Tenure Type         | SR | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------------|------------|---------------------|----|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-552       | 31169-0648 | Fee Simple Absolute | Y  | Y  | A***0043        | 0007                   | \$<br>87.41             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-572       | 31169-1824 | Fee Simple Absolute | Y  | Y  | A***0043        | 0027                   | \$<br>65.87             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-567       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0022                   | \$<br>39.82             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-555       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0010                   | \$<br>22.66             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-568       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0023                   | \$<br>39.98             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-564       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0019                   | \$<br>60.22             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-569       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0024                   | \$<br>51.80             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-571       | 31169-1809 | Fee Simple Absolute | Y  | Y  | A***0043        | 0026                   | \$<br>61.06             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-565       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0020                   | \$<br>49.86             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-817       | 31169-0315 | Fee Simple Absolute | Y  | Y  | A***0196        | 0001                   | \$<br>12.95             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28102 | 31169-0318 | Fee Simple Absolute | Υ  | Y  | A***0026        | 0021                   | \$<br>87.41             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-558       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0013                   | \$<br>47.27             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-559       | 31169-0649 | Fee Simple Absolute | Υ  | Y  | A***0043        | 0014                   | \$<br>52.77             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-566       | 31169-0649 | Fee Simple Absolute | Υ  | Y  | A***0043        | 0021                   | \$<br>47.27             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-560       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0015                   | \$<br>67.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-557       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0012                   | \$<br>45.97             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-556       | 31169-0649 | Fee Simple Absolute | Y  | Y  | A***0043        | 0011                   | \$<br>26.22             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28075 | 31169-0284 | Fee Simple Absolute | Υ  | Y  | A***0026        | 0009                   | \$<br>38.69             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28074 | 31169-0284 | Fee Simple Absolute | Y  | Y  | A***0026        | 0008                   | \$<br>73.98             |

| Owner                         | Status | MLAS ID       | PIN        | Tenure Type         | SR | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------------|------------|---------------------|----|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-679       | 31169-0274 | Fee Simple Absolute | Y  | Y  | A***0092        | 0004                   | \$<br>83.04             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-682       | 31169-0305 | Fee Simple Absolute | Y  | Y  | A***0092        | 0007                   | \$<br>25.90             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-677       | 31169-0309 | Fee Simple Absolute | Y  | Y  | A***0092        | 0002                   | \$<br>35.61             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-676       | 31169-0268 | Fee Simple Absolute | Υ  | Y  | A***0092        | 0001                   | \$<br>37.76             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-681       | 31169-0306 | Fee Simple Absolute | Y  | Y  | A***0092        | 0006                   | \$<br>25.90             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-785       | 31169-0276 | Fee Simple Absolute | Y  | Y  | A***0149        | 0001                   | \$<br>39.34             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-653       | 31169-0281 | Fee Simple Absolute | Y  | Y  | A***0072        | 0001                   | \$<br>35.13             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-654       | 31169-0283 | Fee Simple Absolute | Y  | Y  | A***0072        | 0002                   | \$<br>33.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-678       | 31169-0341 | Fee Simple Absolute | Y  | Y  | A***0092        | 0003                   | \$<br>14.94             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28095 | 31169-0260 | Fee Simple Absolute | N  | Y  | A***0026        | 0016                   | \$<br>29.14             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28094 | 31169-0260 | Fee Simple Absolute | N  | Y  | A***0026        | 0015                   | \$<br>30.76             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-680       | 31169-0297 | Fee Simple Absolute | Y  | Y  | A***0092        | 0005                   | \$<br>40.47             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-683       | 31169-0297 | Fee Simple Absolute | Y  | Y  | A***0092        | 0008                   | \$<br>74.46             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-684       | 31169-0273 | Fee Simple Absolute | Y  | Y  | A***0092        | 0009                   | \$<br>67.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-433       | 31169-0549 | Fee Simple Absolute | Y  | Y  | A***0026        | 0003                   | \$<br>33.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28080 | 31169-0338 | Fee Simple Absolute | N  | Y  | A***0026        | 0014                   | \$<br>15.46             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-435       | 31169-0316 | Fee Simple Absolute | Y  | Y  | A***0026        | 0005                   | \$<br>33.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-431       | 31169-0317 | Fee Simple Absolute | Y  | Y  | A***0026        | 0001                   | \$<br>38.85             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28072 | 31169-0272 | Fee Simple Absolute | Y  | Y  | A***0026        | 0006                   | \$<br>47.43             |

| Owner                         | Status | MLAS ID       | PIN        | Tenure Type         | SR | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------------|------------|---------------------|----|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28077 | 31169-0295 | Fee Simple Absolute | N  | Y  | A***0026        | 0011                   | \$<br>44.84             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28096 | 31169-0260 | Fee Simple Absolute | N  | Y  | A***0026        | 0017                   | \$<br>41.19             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28073 | 31169-0286 | Fee Simple Absolute | Y  | Y  | A***0026        | 0007                   | \$<br>53.58             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28078 | 31169-0295 | Fee Simple Absolute | Y  | Y  | A***0026        | 0012                   | \$<br>69.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28099 | 31169-0280 | Fee Simple Absolute | Y  | Y  | A***0026        | 0020                   | \$<br>64.75             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28097 | 31169-0280 | Fee Simple Absolute | Y  | Y  | A***0026        | 0018                   | \$<br>30.76             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28098 | 31169-0280 | Fee Simple Absolute | Y  | Y  | A***0026        | 0019                   | \$<br>31.73             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-518       | 31169-0255 | Fee Simple Absolute | Y  | Y  | A***0035        | 0029                   | \$<br>74.46             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28076 | 31169-0295 | Fee Simple Absolute | Υ  | Y  | A***0026        | 0010                   | \$<br>37.23             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-<br>28079 | 31169-0285 | Fee Simple Absolute | Υ  | Y  | A***0026        | 0013                   | \$<br>35.45             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-520       | 31169-0221 | Fee Simple Absolute | N  | Y  | A***0035        | 0031                   | \$<br>63.13             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-519       | 31169-0255 | Fee Simple Absolute | Y  | Y  | A***0035        | 0030                   | \$<br>66.37             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-432       | 31169-0317 | Fee Simple Absolute | Y  | Y  | A***0026        | 0002                   | \$<br>37.23             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-490       | 31169-0277 | Fee Simple Absolute | N  | Y  | A***0035        | 0001                   | \$<br>32.38             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-491       | 31169-0277 | Fee Simple Absolute | Ν  | Y  | A***0035        | 0002                   | \$<br>29.14             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-492       | 31169-0278 | Fee Simple Absolute | N  | Y  | A***0035        | 0003                   | \$<br>63.13             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-493       | 31169-0277 | Fee Simple Absolute | N  | Y  | A***0035        | 0004                   | \$<br>58.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-494       | 31169-0277 | Fee Simple Absolute | Ν  | Y  | A***0035        | 0005                   | \$<br>66.37             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-495       | 31169-0277 | Fee Simple Absolute | Ν  | Y  | A***0035        | 0006                   | \$<br>43.71             |

| Owner                         | Status | MLAS ID | PIN        | Tenure Type                             | SR | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------|------------|-----------------------------------------|----|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-496 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0007                   | \$<br>22.66             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-497 | 31169-0277 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0008                   | \$<br>77.70             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-498 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0009                   | \$<br>50.18             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-499 | 31169-0279 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0010                   | \$<br>38.85             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-500 | 31169-0278 | Fee Simple Absolute Fee Simple Absolute |    | Y  | A***0035        | 0011                   | \$<br>33.99             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-501 | 31169-0278 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0012                   | \$<br>25.90             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-502 | 31169-0278 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0013                   | \$<br>29.14             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-503 | 31169-0278 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0014                   | \$<br>59.89             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-504 | 31169-0278 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0015                   | \$<br>42.09             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-505 | 31169-0278 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0016                   | \$<br>19.42             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-506 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0017                   | \$<br>50.18             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-507 | 31169-0277 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0018                   | \$<br>66.37             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-508 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0019                   | \$<br>72.84             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-509 | 31169-0277 | Fee Simple Absolute                     | N  | Y  | A***0035        | 0020                   | \$<br>59.89             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-510 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0021                   | \$<br>51.80             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-511 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0022                   | \$<br>55.04             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-512 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0023                   | \$<br>53.42             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-513 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0024                   | \$<br>58.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-514 | 31169-0277 | Fee Simple Absolute                     | Ν  | Y  | A***0035        | 0025                   | \$<br>66.37             |

| Owner                         | Status | MLAS ID | PIN        | Tenure Type<br>Fee Simple Absolute |         | MR | MNDM<br>Account | MNDM<br>Sub<br>Account | 2023<br>Mining<br>Taxes |
|-------------------------------|--------|---------|------------|------------------------------------|---------|----|-----------------|------------------------|-------------------------|
| Red Pine (60%), Wawa GP (40%) | Active | PAT-515 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0026                   | \$<br>58.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-516 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0027                   | \$<br>19.42             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-517 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0028                   | \$<br>55.04             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-521 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0032                   | \$<br>17.81             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-522 | 31169-0277 | Fee Simple Absolute                | ute N Y |    | A***0035        | 0033                   | \$<br>64.75             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-523 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0034                   | \$<br>50.18             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-524 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0035                   | \$<br>85.79             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-525 | 31169-0278 | Fee Simple Absolute                | N       | Y  | A***0035        | 0036                   | \$<br>30.76             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-526 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0037                   | \$<br>58.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-527 | 31169-0277 | Fee Simple Absolute                | N       | Y  | A***0035        | 0038                   | \$<br>56.66             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-528 | 31169-0279 | Fee Simple Absolute                | Ν       | Y  | A***0035        | 0039                   | \$<br>55.04             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-529 | 31169-0279 | Fee Simple Absolute                | N       | Y  | A***0035        | 0040                   | \$<br>24.28             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-775 | 31169-0293 | Fee Simple Absolute                | У       | Y  | A***0142        | 0023                   | \$<br>94.55             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-776 | 31169-0302 | Fee Simple Absolute                | Y       | Y  | A***0142        | 0024                   | \$<br>70.69             |
| Red Pine (60%), Wawa GP (40%) | Active | PAT-777 | 31169-0302 | Fee Simple Absolute                | У       | Y  | A***0142        | 0025                   | \$<br>31.32             |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 103977           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 145104           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 156473           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 159078           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 165694           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 165695           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 176564           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 178616           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 199790           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 201079           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 203245           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 207101           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 208425           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 211226           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 237070           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 237071           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 241897           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 247316           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 248429           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 254408           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 259937           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 260306           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 269154           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 269155           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 269156           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 277262           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |

#### Table 4-4: List of Unpatented Mining Claims and NSRs on the Wawa Gold Project in Good Standing

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 278459           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 311141           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 314445           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 325034           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 327110           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 340102           | SCMC             | Active           | 2027-01-20         | (100) RED PINE EXPLORATION INC. | 2%  |
| 105773           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 105774           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 105798           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 127200           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 138679           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 155251           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 165765           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 171219           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 173367           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 179189           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 185222           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 190682           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 190705           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 190706           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 209256           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 220012           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 227954           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 233041           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 237797           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 240094           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 240095           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 275220           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 275221           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 294615           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 294637           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 306719           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 306741           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 311295           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 311840           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 324415           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 334474           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 340184           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 340185           | SCMC             | Active           | 2027-02-09         | (100) RED PINE EXPLORATION INC. | 2%  |
| 121565           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 122905           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 132965           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 178854           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 185590           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 205075           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 205775           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 205776           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 244858           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 252391           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 252392           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 252393           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 264407           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 282079           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 300941           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 339794           | SCMC             | Active           | 2027-02-13         | (100) RED PINE EXPLORATION INC. | 2%  |
| 125650           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 125651           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 125652           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 125653           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 125654           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 200738           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 200739           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 200740           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 200741           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 208783           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 208784           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 220864           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 227648           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 227649           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 274808           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 276913           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 310772           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 323495           | SCMC             | Active           | 2027-03-07         | (100) RED PINE EXPLORATION INC. | 2%  |
| 209144           | SCMC             | Active           | 2027-03-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 305001           | SCMC             | Active           | 2027-03-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 102432           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 119569           | BCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 156393           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 156394           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175850           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175851           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 191868           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221783           | BCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 276968           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 325045           | BCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337406           | SCMC             | Active           | 2027-03-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 100524           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 103359           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 103360           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 108689           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 110720           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 127806           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 127807           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 136977           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 143017           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 146495           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 155757           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 156956           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 157138           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 157156           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 163029           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 174383           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175178           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175179           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 177812           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 177841           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 181649           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 181650           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 186282           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 191196           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 193668           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 201774           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 209099           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 209125           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 213116           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221112           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221113           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221782           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 229087           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 229088           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 229852           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 231157           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 241062           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 241257           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 241915           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 242561           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 243855           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 243875           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 249849           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 256430           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 256431           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 257861           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 258304           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 259046           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 260609           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 260610           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 260611           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 260612           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 261027           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 267383           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 268378           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 268379           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 274495           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 276316           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 277027           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 279166           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 286948           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 288363           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 289601           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 291578           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 296349           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 296409           | BCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 308395           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 308396           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 315810           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 323494           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 324398           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 324399           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 328526           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 336509           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337240           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337241           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 337358           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 343793           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 343809           | SCMC             | Active           | 2027-03-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505363           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505364           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505365           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505366           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505367           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505368           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505369           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505370           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505371           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505372           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505373           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505374           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505375           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505376           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505377           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505378           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505379           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505380           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505381           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505382           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505383           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505384           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505385           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505386           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 505387           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505388           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505671           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505672           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505673           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505674           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505675           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505676           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505677           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505678           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 505679           | SCMC             | Active           | 2027-04-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 128402           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 156972           | BCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 163043           | BCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175799           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 191927           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 241989           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 259001           | BCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 259002           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 295748           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 296429           | BCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 325610           | SCMC             | Active           | 2027-06-29         | (100) RED PINE EXPLORATION INC. | 2%  |
| 104121           | SCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 104122           | SCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 104123           | SCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 121273           | BCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 159733           | SCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 166331           | BCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 233111           | BCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 269823           | BCMC             | Active           | 2027-07-28         | (100) RED PINE EXPLORATION INC. | 2%  |
| 172355           | SCMC             | Active           | 2027-08-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 172356           | SCMC             | Active           | 2027-08-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 324337           | SCMC             | Active           | 2027-08-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 336696           | SCMC             | Active           | 2027-08-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 127855           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221769           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 297118           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 324938           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 326258           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337389           | SCMC             | Active           | 2027-09-10         | (100) RED PINE EXPLORATION INC. | 2%  |
| 229853           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 244649           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 269151           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 280440           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 296484           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 299117           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 340100           | SCMC             | Active           | 2027-09-15         | (100) RED PINE EXPLORATION INC. | 2%  |
| 128427           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 128428           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 128529           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 157679           | BCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 163046           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 163768           | BCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175822           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 175823           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 175824           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 177164           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 177165           | BCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221057           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 221743           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 242498           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 278249           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 278538           | BCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 288315           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 288980           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 295812           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 297169           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 325017           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 326294           | BCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337462           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 337463           | SCMC             | Active           | 2027-10-02         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682413           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682414           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682415           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682416           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682417           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682459           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682460           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682461           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682462           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682463           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |

| Tenure<br>Number | Tenure Cell Type | Tenure<br>Status | Tenure<br>Due Date | Tenure Holder                   | NSR |
|------------------|------------------|------------------|--------------------|---------------------------------|-----|
| 682464           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682465           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682466           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682467           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |
| 682468           | SCMC             | Active           | 2027-10-25         | (100) RED PINE EXPLORATION INC. | 2%  |

## 4.3 **Permits and Authorization**

In Ontario, permits are required for exploration on unpatented mineral claims or leases. Exploration activities by Red Pine on the Project became active in 2014 and include geophysical activities requiring a power generator, line cutting where the line width is less than 1.5 m, mechanized drilling where the total weight of the rig is less than 150 kilogram (kg), mechanized surface stripping where the total stripped area is less than 100 m<sup>2</sup>, or pitting and trenching of a volume of 1 to 3 cubic metres (m<sup>3</sup>). Exploration on unpatented mineral claims or leases requires an exploration plan. Plan and permit applications are submitted to the Ministry of Northern Development and Mines for review, posting on the Environmental Registry (30 days) and circulation to First Nations communities who have areas of cultural significance. Plans are typically approved within 30 days and permits within 50 days. Plans are valid for two years and permits are valid for three years.

No exploration plans or permits are required for fee simple absolute patents and for areas that are part of a closure plan. All surface rights holders must be notified of the application in advance of the submission. Thus, for the 2014-2020 drilling seasons, no permit was required. However, a magnetotellurics geophysical survey was completed on unpatented or leased mining claims and required a permit. Exploration permit PR-19-000238 has been active since October 24, 2019 and covers the claims and leases of the property near key exploration targets on which exploration permits are required to conduct certain exploration activities as indicated in the Mining Act of Ontario. The exploration permit is valid to October 23, 2022. A new permit, PR-22-000099 was issued on June 2, 2022 and is valid until June 1, 2025 The mining claim numbers covered by permit PR-22-000099 are 103359, 103360, 105774, 127855, 155251, 156473, 157679, 159078, 163768, 165765, 171219, 172356, 173367, 177164, 177812, 177841, 190706, 201079, 203245, 208425, 209256, 221769, 229852, 229853, 231157, 233041, 237071, 241897, 242561, 243855, 243875, 244649, 247316, 259046, 260306, 261027, 268378, 268379, 269151, 269155, 275220, 275221, 277262, 278249, 278459, 279166, 294637, 295748, 296484, 297118, 297169, 306741, 311141, 311295, 311840, 324337, 324415, 324938, 326258, 334474, 336696, 337389, 340100, 340185.

#### 4.3.1 Summary of the Agreement between Red Pine and First Nation Communities

Red Pine has entered into agreements with certain First Nations which articulate a mutually agreed upon process for consultation for exploration phase activities conducted within the exploration area. Red Pine has entered into separate agreements with the Batchewana First Nation, the Garden River First Nation, and the Michipicoten First Nation. The stated purpose of these agreements is to articulate a clear and mutually agreed upon consultation process to identify adverse impacts to Aboriginal and treaty rights and engage with respect to accommodation, and to establish a mutually beneficial, positive, and productive relationship. In addition to supporting consultation, Red Pine has agreed to support the promotion of employment opportunities for First Nation members.

While these agreements apply to exploration phase activities, the agreements contemplate the negotiation of future agreements pertaining to advanced exploration and, potentially, development.

During development of the Project, the Company agreed to the following general guidelines:

- Ensuring that Batchewana, Garden River, and Michipicoten First Nation customs are always respected.
- Understand Treaty Rights and Inherent Rights.
- Safety is priority for worker, general public, and wildlife.
- Sustainable practice intergraded into all projects dealing with environmental activities.
- Protect wildlife and wildlife habitat.

- Environmental impact protection.
- Promoting First Nation employment opportunities.

#### 4.4 Environmental Considerations

Red Pine is in the process of completing a mine closure plan. All patented mining claims for which mining rights are held are part of the closure plan except for PAT-775, 776, and 777 which were recently purchased in 2022. The QP is relying on the expert opinion of Demetri N. Georgiou, P.Eng., and Paul J. Brugger, P.Eng., of exp Global ("exp"). Exp provided Red Pine with a description of items that are being worked on at the time of the effective date of this Report.

Since 2015, Red Pine has capped mine shafts that were exposed to the environment to bring all open shafts up to environmental standards.

# 4.4.1 Summary of the Environmental Studies Completed as Part of the Mine Closure Plan

On March 1, 2017, expert Global brought to Red Pines' attention that the following, as discussed in the coming sub-Items, environmental concerns would need to be addressed.

#### 4.4.1.1 Item 1: Capping of Exposed Mine Shafts

The main shaft at the Minto Mine site was capped in 2009 and the concrete pad that was located next to the shaft opening has been broken, graded, and covered. The vent raise concrete cap was reinstalled to Code requirements in the spring of 2009 and is considered complete. The waste rock dump was re-contoured to a flatter profile in October 2009.

The main shaft at the Van Sickle Mine site was capped in 2009.

The main shaft at the Park Hill Mine site was backfilled with cemented mine waste in 1995. The Parkhill Mine zone of thin crown pillars was closed by blasting prior to 1996 and the open stope was filled prior to 1997.

During the winters of 2019 and 2020, Red Pine initiated the remediation and filling of the Mackey Point pits. The completion of that remediation work, which implies completing the filling of the two historical pits,.During the winter of 2021 an access trail was created for an excavator from Highway 101 to the Mackey Point pits. Material was moved from the south side of highway 101 on the Wawa Gold Property to fill in the pits. Mounts of material were created over the pits and let to settle. It was determined in the late fall of 2022 that more material would need to be moved to the pits to fill them in completely, this remains outstanding.

#### 4.4.1.2 Item 2: Revegetation

Due to the ongoing exploration by Red Pine Exploration, Item 2 – Revegetation has been delayed.

#### 4.4.1.3 Item 3: Surface and Ground Water

Run-off is directed from the Parkhill and Grace to Darwin sites in a southerly direction toward Trout Creek. Trout Creek eventually enters the Michipicoten River south of the property. The Ontario Ministry of the Environment (MOE) has issued an Ontario Water Resources Act, Section 53 Certificate of Approval (COA) No. 4-0101-88-896 in 1989 with respect to the Minto Lake Tailings Dam and Pond. As per the conditions of the COA, which includes a comprehensive surface water monitoring program, the result of surface water sampling and analysis are that effluent quality continues to remain within COA limits.

No ground water issues are expected to require management at the time of final closure.

#### 4.4.1.4 Item 4: Aquatic Plant and Animal Life

Minto Lake has been supporting a fish community of brook trout, white suckers and cyprinids and is managed by the Ministry of Natural Resources. Post closure, it is not anticipated that this arrangement will change.

#### 4.4.1.5 Item 5: Road Spillway Construction

The reconstruction of the spillway out of Minto Lake, as per the Closure Plan. The initial design and survey work were completed in 2009 with construction completed in summer 2010.

#### 4.4.1.6 Item 6: Acid Drainage Potential

In 2009, representative waste rock samples from the Parkhill site were sent to ALS Chemex in Vancouver for analysis of acid generating potential. The results from these samples confirmed the earlier CANMET findings (i.e., that buffering capacity is moderate to high in all rock samples found at the sites).

The QP is not aware of any other significant factors or risks that may affect the access, title, or the right or ability to perform work on the property.

# 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY

# 5.1 Accessibility

The Town of Wawa is located on Highway 17 (Trans-Canada Highway), approximately 480 km east of Thunder Bay, Ontario, approximately 225 km north of Sault St. Marie, Ontario, and approximately 650 km northwest of Toronto, Ontario. The property can be accessed by driving 2 km east on Highway 101 from Wawa and then turning south onto Surluga Road using a 2-wheel drive vehicle. During the winter months, the main access road to the property from Highway 101 is plowed. Areas off the main road can be accessed by snowmobiles and ATVs.

# 5.2 Local Resources and Infrastructure

Skilled and unskilled labour is expected to be available in Wawa because of the long mining history of the area. Wawa has a population of 2,705 people (2021) (https://www12.statcan.gc.ca/census-recensement/2021).

A 230-kV power line crosses the southern part of the property, and a second power line crosses the western part of the property. Wawa Municipal Airport is located 3.1 km south southwest of Wawa along highway 101, no commercial airlines operate from the airport. Canadian National Railway acquired Algoma Central Railway in October of 2001 and ceased operation of the Sault Ste Marie to Hearst line in July of 2015. Passenger service no longer exists to Hawk Junction, 23 km northeast of Wawa.

Enough water is available from lakes and streams on the property and surface rights for a large part of the property are held by Red Pine's joint venture partners and are enough for any potential mining operation.

There is sufficient space for tailings storage areas, potential waste disposal areas, heap leach pad areas and potential processing plant sites.

## 5.3 Climate

The vicinity of the property to Lake Superior has a significant impact on the local climate. Environment Canada has recorded weather details in Wawa since 1981 (http://climate.weather.gc.ca) and showed that the warmest temperatures are recorded in July and August (daily mean  $15^{\circ}$ C; daily maximum 20.8°C). The coldest temperatures are typically recorded in January (daily mean  $-14^{\circ}$ C; daily minimum  $-20.2^{\circ}$ C). September and October are the months with the most rainfall (~122 mm and ~107 mm, respectively) and the highest snowfall occurs in December (~80 cm). Exploration and mining can be completed on the property year-round.

# 5.4 Physiography

The Town of Wawa is located at 289 m asl. The area of the property (Figure 5-1) is hilly with a range of elevations from 300 m asl to 400 m asl. Steep ridges exist locally. The property is forested with spruce, pine, poplar, and birch being the dominant species.



Figure 5-1: Location of Red Pine's Wawa Gold Property
#### 6.0 **HISTORY**

The Project has a long exploration history that began in the late 1800s and has been discontinuously explored and worked since discovery. This long period of activity resulted in the exploitation of 8 gold mines. Preserved records of production have been summarized by Sage (1993) and Rupert (1997) who also provided a detailed overview of historical exploration that was extensive in some parts of the property (Table 6-1; Figure 6-1).

A total of 127,489 m of historical drilling from 580 surface diamond drill holes and 1,444 underground diamond drill holes have been recorded and compiled in Red Pine's drilling database (Figure 6-2). Widespread stripping and sampling of trenches, the sinking of shafts and the collection of numerous samples has also been completed on the property. This Item presents the history of exploration and mining activity that occurred on the Project and stages of the amalgamation of the different land packages that now form the current Project.

| Mine         | Tonnes Milled | Gold Grade (g/t) | Gold Recovered<br>(oz) |
|--------------|---------------|------------------|------------------------|
| Mariposa     | 8             | 72.99            | 19                     |
| Grace+Darwin | 41,302        | 13.27            | 17,634                 |
| Parkhill     | 114,096       | 14.81            | 54,298                 |
| Van Sickle   | 8,372         | 6.34             | 1,710                  |
| Cooper       | 4,435         | 11.42            | 1,627                  |
| Jubilee      | 107,930       | 4.29             | 36,178                 |
| Minto        | 57,335        | 12.56            |                        |
| Surluga      | 86,082        | 3.12             | 8,626                  |
| Total        | 419,560       | 9.04             | 120,093                |

#### Table 6-1: Historical Gold Mine and Gold Production Once Active on the Wawa Gold Project



Figure 6-1: Map Showing the Main Historical Mines, Shafts, and Pits on the Wawa Gold Project



Figure 6-2: Historical Drilling and Operators though the History of the Wawa Gold Project

#### 6.1 Discovery Period – 1897 to 1910

The Wawa area has been explored for gold since the 1860s (Rupert, 1997). Gold was first discovered by William Teddy in 1897 at Mackay Point and panned along the south shore of Wawa Lake at Mackey (Frey, 1987; Table 6-2). A staking rush followed the discovery and benefited from the change in claim staking adopted by the Ontario Government to encourage staking in 1895 (MacMillan and Rupert, 1990). This early rush period resulted in multiple discoveries.

Attempts to produce gold from bedrock started in 1897 with the sinking of multiple shafts and the digging of many test pits throughout the property. In 1897 and 1898 on the Jubilee Shear Zone west (west or W) of Jubilee Lake, a 103-foot (ft) shaft was sunk by the Great Northern Mining Company Ltd. In sericite schists (Sage, 1993). Gold values encountered in that shaft were described as negligible. In 1897, S. Berailldt discovered the Minto Mine and sold it to D. Tisdale who sank a 130-ft inclined shaft on the vein. Work on the Minto Mine was suspended in 1900. In 1898, Mr. A. B. Blackington and Mr. W.H. Lewis discovered the Blackington vein (now known as the Mariposa Vein). In 1900, the Edey Gold Mining Company sunk a 33-foot (ft) shaft and dug many 25-ft deep pits (Sage 1993).

| Table 6-2: Historical Exploration and Mining Activity during the Discovery Period of the Wawa Gold |  |
|----------------------------------------------------------------------------------------------------|--|
| Project                                                                                            |  |

| Company                                                                            | Years                                      | Exploration                                                                                                                         | Results                                                                                          | Reference     |
|------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------|
| William Teddy, and<br>J.J. Mackay and J.L.                                         | 1897-1900                                  | Discovery of gold on the shore of Wawa<br>Lake at Mackay point                                                                      | Staking rush in the Wawa area and discovery of Wawa Gold Camp                                    | Sage, 1993    |
| Caverhill                                                                          |                                            | Pitting and trenching of auriferous quartz veins                                                                                    | Sinking of an 8 by 10 by 40-ft shaft                                                             |               |
| Great Northern<br>Mining Company                                                   | 1897-1898                                  | Discovery of auriferous sericitic schists<br>west of Jubilee Lake related to Jubilee<br>Shear Zone;                                 | Gold grade in shear zone were<br>described as negligible; Operation                              | Sage, 1993    |
|                                                                                    |                                            | Sinking of a 103-foot shaft                                                                                                         |                                                                                                  |               |
| S. Berailldt and D.<br>Tisdale                                                     | 1897-1900                                  | Discovery of the Minto Mine; Stripping<br>and pitting; Sinking of a 133-foot inclined<br>shaft                                      | Records lost                                                                                     | Sage, 1993    |
| Mr. A. B.<br>Blackington and Mr.<br>W.H. Lewis, and<br>Edey Gold Mining<br>Company | 1898-1900                                  | Discovery of the Mariposa Vein; Sinking<br>of the 33-foot Blackington shaft on the<br>vein; Digging of several 25-foot-deep<br>pits | Records lost                                                                                     | Sage, 1993    |
| Peter Nissen and<br>Hornblende Mining<br>Company                                   | 1899-1900                                  | Discovery of the Hornblende Shear<br>Zone;<br>Sinking of two shafts and construction of<br>a test mill near Hornblende Lake         | Results lost                                                                                     | Sage, 1993    |
| J. George and<br>Algoma Commercial                                                 | 1900-1903                                  | Discovery of the Grace vein;                                                                                                        | Gold production from 6,097 tons of<br>ore through a 10 ton per day stamp<br>mill ending in 1902; | Sage, 1993    |
| Company                                                                            |                                            | Sinking of the 304-foot shaft on the Grace Mine                                                                                     | Company went into receivership in 1903                                                           |               |
| Sunrise Mining<br>Company                                                          | 1902-1903                                  | Sinking of a 100-foot inclined shaft and<br>a 20-foot vertical shaft on the Sunrise<br>vein                                         | Records lost                                                                                     | Sage, 1993    |
| Mariposa Gold                                                                      | 1902-1904                                  | Discovery of the northern extension of the Mariposa vein;                                                                           | Limited gold production of 18<br>ounces of gold from two levels at                               | Sage 1993     |
| Company                                                                            | 1002 1001                                  | Sinking of the 208-foot Mariposa shaft                                                                                              | 100 and 200 feet                                                                                 | 6490, 1000    |
| Stanley Newton<br>Syndicate                                                        | Vewton 1903 Sampling declogical assessment |                                                                                                                                     | Several Au-bearing veins located;<br>conclusions "Michipicoten gold                              | Boss, 1903    |
|                                                                                    |                                            |                                                                                                                                     | district will become one of the<br>important gold camps of America"                              | (41N15NE0039) |
| Lepage Gold Mining<br>Company                                                      | 1907-1910                                  | Rehabilitation and operation of the Grace Mine                                                                                      | Production of 4,260 tons of ore from the Grace vein                                              | Sage, 1993    |

In 1899, Mr. Peter Nissen discovered gold in the Hornblende shear Zone. Two inclined shafts of 22 ft and 32 ft were sunk, and a test mill was constructed in 1900 near Hornblende Lake by the Hornblende Mining Company. In 1902 and 1903, the Mariposa Gold Company sunk the 208-ft Mariposa shaft, inclined at 80°NE in the footwall of the Mariposa Vein with two drifted levels at 100 ft and 200 ft (Sage, 1993).

Gold production on a larger scale started in 1900, following the discovery of the Grace vein. The Algoma Commercial Company started the Grace Mine by sinking a 304-ft shaft on the Grace vein and produced 6,097 tons of ore (Sage, 1993). Commercial gold production at the Grace mine ceased in 1903 and resumed between 1907 and 1910 when the mine was operated by the Lepage Gold Mining Company who produced 4,260 tons of ore.

#### 6.2 Peak of Mining Activity – 1925 to 1938

During the period between 1910 and 1925, the Project saw an exploration and production hiatus characterized by brief periods of activity and many land transactions between different parties (Sage, 1993). The following period, extending from the mid-late 1920s to the late 1930s, saw the peak of mining activity on the property with several mines in operation. Production records exist for eight of the mines during this period (Cooper, Minto, Jubilee, Parkhill, Grace-Darwin, Mariposa, and Van Sickle, Figure 6-2, Table 6-2, Table 6-3, and Table 6-4, MacMillan and Rupert, 1990; Sage, 1993). The Cora vein, located in the Jubilee Shear Zone, was also briefly mined in the Cora shaft in 1927 and constitutes the first area mined of the Jubilee Shear Zone. The other larger mine from that period, extracting gold from the Jubilee Shear Zone, was the Jubilee Mine that produced 107,930 t at 4.29 g/t gold. The largest producer of that period was the Parkhill Mine, active between 1929 and 1938 and produced 54,298 oz of gold from 114,096 t at 14.81 g/t gold (Table 6-2). By the late 1930s, 15 mines produced gold in the Wawa area (Frey, 1987).

#### 6.3 Surluga Mine Discovery and First Mining Operation – 1960 to 1976

The 1940s and 1950s was characterized by little exploration and salvaging operations at the Grace-Darwin and Deep Lake Mines. In the 1950s, Tom Surluga became quite active in the region and initiated many land transactions to consolidate separate land packages covering what is now the Surluga Deposit (Sage, 1993).

Exploration and development activity resumed in 1960 when Tom Surluga interested W.D. Sutherland in the region (Table 6 3 and Table 6 4). Sutherland and company continued the consolidation of the property and in 1960 to 1961 and drilled 25 holes in what is now the northern extension of the Surluga Deposit (Table 6 5). In 1962, following the successes of the 1960 to 1961 drill programs, Sutherland and company formed Surluga Gold Mines Limited, which continued land consolidation and surface drilling over the Surluga Deposit (Table 6 5). The property was optioned to Consolidated Mining and Smelting Limited in 1964 who drilled 20 surface diamond drill holes and dropped the option in June 1964. Between 1964 and 1968, Surluga Gold Mines Limited sank a 950-ft shaft with 7 levels, forming what is now known as the Surluga mine. The shaft included 7 levels spaced by 150 ft. In 1967, Surluga Gold Mines Limited constructed a 750 ton-per-day mill on the property and started an extensive underground drilling program (Table 6 6 and Table 6 7). The mill was in operation in 1968 and 1969, although underground development continued past 1969. Development of the Surluga Mine and exploration between 1969 and 1971, was in partnership with Pango Gold Mines Limited, which became part owner of the Surluga Mine, and was a subsidiary of Prado Exploration Limited, and Surluga Gold Mines Limited (Sage, 1993). Extensive surface drilling, drifting, and underground drilling in the Surluga Deposit occurred during that period, resulting in the discovery of the "6 to 5 ramp" high-grade zone.

| Table 6-3: Histor<br>Project | rical Explo | ration and Mining Activity during the | Peak of Mining Activity on t | he Wawa Gold |
|------------------------------|-------------|---------------------------------------|------------------------------|--------------|
|                              |             |                                       |                              |              |

| Company                                | Year(s)   | Exploration                                                                                                                           | Results                                                                                                                                                                                                                                   | Reference                                           |
|----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Anglo Huronian Ltd.<br>And Cooper Gold | 1926–1929 | 26 surface diamond drill holes and underground<br>development at Jubilee Mine                                                         | No results reported                                                                                                                                                                                                                       | Rupert, 1997                                        |
| Cooper Gold Mine<br>Limited            | 1926-1930 | Diamond drilling and exploration of Minto, Jubilee,<br>Cooper and Trout Creek (Parkhill) mines<br>Gold production from the Minto Mine | Exploration results lost;<br>Sinking of a 3-compartment vertical shaft<br>in the Minto Mine w ith levels at 125, 225<br>and 325 ft; 5,818 ft of lateral drifting                                                                          | Sage, 1993                                          |
| Pow er and Mines<br>syndicate          | 1926-1930 | Resumption of mining in the Grace Mine; Discovery of<br>Nyman vein                                                                    | Sinking of the shaft to 440 ft; Production of 750 tons of ore                                                                                                                                                                             | Sage, 1993                                          |
| Cora Gold Mines<br>Limited             | 1927      | Sinking of Cora shaft, 3 diamond drill holes                                                                                          | Records lost                                                                                                                                                                                                                              | Sage, 1993                                          |
| Parkhill Gold Mines                    | 1929–1938 | Shaft started in 1930; Operated Parkhill mine                                                                                         | Production of 54,298 oz of gold;<br>Bankruptcy in 1938; Ore grade material<br>reported left at the 14 <sup>th</sup> level                                                                                                                 | 41N15NE0087<br>(Amalgamation of<br>several reports) |
| Minto Gold Mines                       | 1930–1939 | Purchase and operation of the Cooper, Minto, and<br>Jubilee Mines; Operation of a 75 ton per day cyanide mill                         | Gold production from the Cooper (1,627 oz<br>of gold), Jubilee and Minto Mines<br>(combined production of 36,178 oz of<br>gold)                                                                                                           | Sage, 1993<br>Rupert, 1997                          |
| L.A. Van Sickle and S.B.<br>Smith      | 1933-1936 | Discovery and operation of the Van Sickle mine                                                                                        | Sinking of a 289-ft shaft w ith levels at 119<br>and 261 ft; 50 ton per day mill erected;<br>Production of 1,710 oz of gold                                                                                                               | Sage, 1993<br>Rupert, 1997                          |
| Mackay Point<br>Syndicate              | 1933/34   | Metallurgical testing, 15 drill holes                                                                                                 | Up to 17 g/t Au over 0.3 m in core                                                                                                                                                                                                        | Mackey Point<br>Syndicate, 1933<br>(42C02SE0021)    |
| Darw in Gold Mines<br>Limited          | 1934-1937 | Gold production from the Darw in Mine                                                                                                 | Deepening of inclined shaft to 500 ft;<br>Sinking of a vertical shaft to 800 ft; 10,400 ft<br>of drifting, 2,900 ft of cross-cutting and<br>4,000 ft of raising; Total gold production<br>from Darw in-Grace mine of 17,634 oz of<br>gold | Sage, 1993<br>Rupert, 1997                          |
| W.J. Hocking and J.C.<br>Canfield      | 1934-1939 | Discovery and operation of Deep Lake Mine                                                                                             | Construction of 20 ton per day mill; Sinking<br>of a 200-ft tw o compartment shaft w ith<br>tw o levels;                                                                                                                                  |                                                     |
| Mackay Point Gold<br>Mines Limited     | 1936-?    | Trenching, pitting and 4,285 ft of diamond drilling at<br>Mackay Point and on Root vein                                               | Records lost                                                                                                                                                                                                                              | Sage, 1993                                          |
| Waw a Gold Fields<br>Limited           | Pre-1934  | Trenching and stripping of Figgus vein                                                                                                | Assays betw een \$0.70 across 24 inches<br>to \$262.85 across 18 inches reported (gold<br>betw een \$20.5 and \$35/oz in 1934)                                                                                                            | Rupert (1979)                                       |

| Company                                                                  | Year(s)   | Exploration Results                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference                                                                                                                                |
|--------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Tom Surluga and W.D.<br>Sutherland                                       | 1960-1962 | Consolidation of land package over Surluga Deposit and 25 surface drill holes                                                                                  | Discovery of Surluga Mine<br>S022 drilled in 1961contained 10.27 g/t gold<br>over 15.12 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sage, 1993                                                                                                                               |
| Surluga Gold Mines                                                       | 1962-1964 | Surluga Gold Mines Incorporated; 64 surface drill holes                                                                                                        | Extension of Surluga high-grade zone;<br>Mine construction started; Intersection of<br>broad zones of mineralization in the<br>footw all of Jubilee Shear Zone in S087<br>and S088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kuryliw , 1970 & 1972<br>(41N15NE0036)                                                                                                   |
| Cominco                                                                  | 1964      | Optioned property; mapping; geophysics (no specific method mentioned); 20 drill holes                                                                          | Geophysics inconclusive; VG in one drill hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Morris, 1964<br>(42C02SE9043)                                                                                                            |
| Surluga Gold Mines                                                       | 1964–1969 | 3 shafts sunk, levels 1, 2, 3 and 5 developed; Surluga mine<br>brought into production; Surface and underground<br>diamond drilling from 1964 to 1969          | Mine operated from 1968 to 1969; drilling<br>intersected numerous gold- rich zones<br>leading to the discovery of the 6-5 ramp<br>zone; One of discovery hole (U0769L6)<br>contained 6.15 g/t gold over 66.29 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surluga Gold Mines<br>Annual Report<br>(41N15NE0063)<br>Kuryliw , 1972<br>(41N15NE0036)<br>Kuryliw , 1969<br>(41N15NW0037)               |
| Pango Gold Mines Ltd.                                                    | 1969-1971 | JV w ith Surluga Gold Mines: expansion of underground<br>w orkings, underground drilling; detailed surface mapping.<br>Ground mag survey 1 Ground mag survey 2 | New drifts and adits; "good" grades<br>returned from drill holes (no assay data<br>available).<br>Ground mag survey 1: Oct-Nov 1969. Line<br>spacing 400 ft, Tie spacing 2000 ft. An<br>inclined gabbro plug E of Jubilee Lake<br>containing disseminated pentlandite-<br>chalcopyrite-pyrrhotite mineralization w as<br>found to have highly magnetic pyrrhotite-<br>pentlandite but the gabbroic rock itself<br>w as found to have low magnetics, notable<br>low er than the biotitic syenite intruded by<br>the gabbro. A 1000 gamma anomaly w as<br>identified and noted to be associated with<br>disseminated pentlandite-pyrrhotite<br>mineralization in the gabbro, east of Jubilee<br>Lake. The un-mineralized gabbro w as<br>noted to have a flat magnetic response.<br>Additional magnetic anomalies are noted<br>to be associated w ith peridotite plugs and<br>are part of the Pango intrusive complex.<br>Ground mag survey 2: April-July 1970.<br>74.82 line-mi at 400-ft line spacing, 3000-ft<br>tie lines, and 100-ft station spacing. July<br>1970, 6.3 line-mi of ground mag completed<br>at 100-ft stations. Magnetic flat response,<br>indicating a uniform suite of rocks. One<br>2000 gamma anomaly w as noted, adjacent<br>to a carbonatite plug | Kuryliw , 1972<br>(41N15NE0036)<br>Kuryliw , 1969<br>(41N15NW0037)<br>Tindale, 1970a<br>(42C02SE0208)<br>Tindale, 1970b<br>(41N15NE0008) |
| JDS Bohme Property                                                       | 1970      | Ground mag survey                                                                                                                                              | Survey completed at 400-ft line spacing.<br>Only magnetic linear anomalies noted,<br>interpreted to be gabbroic intrusive dykes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kuryliw , 1970 & 1972<br>(41N15NE0516)                                                                                                   |
| Pango Gold Mines Ltd.                                                    | 1971      | Ground mag survey; 1 drill hole north shore of Reed Lake into mag anomaly                                                                                      | Ground mag survey: 100-ft intervals.<br>Anomaly found – recommended for follow<br>up drilling: ultramafic rock w ith magnetite,<br>minor sulphides, no gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kuryliw , 1971a<br>(41N15NE9035)<br>Kuryliw , 1971b<br>(41N15NE0088)                                                                     |
| Surluga Gold Mines<br>(under the name of<br>Pursides Gold Mines<br>Ltd.) | 1973-1975 | Mine reopened; new drifting on the 6 <sup>th</sup> level, decline betw een 6 <sup>th</sup> and 7 <sup>th</sup> level; underground diamond drilling             | Resources delineated based on drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41N15NE0036<br>(Amalgamation of<br>reports. P. 79)                                                                                       |

#### Table 6-4: Historical Exploration and Mining Activity during the First Development of the Surluga Mine

| Company                                   | Year(s)   | Exploration                                        | Results                                                                                     | Reference                    |
|-------------------------------------------|-----------|----------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|
| Consolidated Morrison<br>Explorations Ltd | 1974      | Airborne magnetic and radiometric survey (Aerodat) | Mag and radiometric anomaly related to<br>carbonatite                                       | Boyko, 1974<br>(42C02SE1210) |
| Pursides Gold Mines                       | 1974-1975 | VLF-EM survey                                      | VLF-EM: Summer 1974, w inter 1975. 8<br>anomalies detected, 1 recommended for<br>follow -up | Crone, 1975<br>(41N15NE0082) |

Pango Gold Mines completed limited drilling on other prospects on the property (Cooper Mine, Reed Lake maficultramafic complex) as well as surface exploration, geological mapping, and geophysical surveys. Limited exploration conducted by other parties also took place on the property in that period. In 1973, Surluga Gold Mines changed its name to Pursides Gold Mines Limited and conducted an underground exploration program in the Surluga Deposit and the development of levels 6 and 7. All exploration and development activities on the Surluga Deposit stopped in 1975 and Pursides Gold Mines Limited was forced in receivership in 1976.

 Table 6-5: Historical Surface Diamond Drill Holes Completed on the Wawa Gold Project in the 1960 to

 1975 Period

| Company    | Year Drilled | No. of Holes | Meterage<br>(m) |
|------------|--------------|--------------|-----------------|
| Sutherland | 1960         | 8            | 744             |
| Sutherland | 1961         | 17           | 2,136           |
| Surluga    | 1962         | 51           | 5,976           |
| Surluga    | 1963         | 13           | 2,093           |
| Cominco    | 1964         | 20           | 2,633           |
| Surluga    | 1968         | 16           | 1,673           |
| Surluga    | 1969         | 13           | 2,875           |
| Pango      | 1969         | 43           | 6,811           |

| able 6-6: Historical Underground Diamond Drill Holes Completed in the Surluga Deposit in the 19 | 60 to |
|-------------------------------------------------------------------------------------------------|-------|
| 1975 Period                                                                                     |       |

| Company     | Year Drilled | No. of Drill<br>Holes | Meterage<br>(m) |
|-------------|--------------|-----------------------|-----------------|
| Surluga     | 1967         | 9                     | 244             |
| Surluga     | 1968         | 261                   | 8,276           |
| Surluga     | 1969         | 57                    | 1,184           |
| Pango       | 1969         | 309                   | 10,654          |
| Pango       | 1970         | 100                   | 3,596           |
| Pursides    | 1974         | 31                    | 787             |
| Pursides    | 1975         | 170                   | 4,217           |
| Surluga     | 1975         | 1                     | 6               |
| Log Missing | ?            | 47                    | 1,749           |

| Hole No. | Year<br>Drilled | From (m) | То<br>(m) | Interval<br>(m)* | Au (g/t) |
|----------|-----------------|----------|-----------|------------------|----------|
| S012     | 1961            | 35.81    | 87.94     | 52.13            | 1.31     |
| S022     | 1961            | 71.35    | 133.84    | 62.49            | 2.91     |
| S023     | 1961            | 76.35    | 126.49    | 50.14            | 1.96     |
| S028     | 1962            | 57.61    | 121.31    | 63.7             | 2.78     |
| S030     | 1962            | 78.03    | 132.92    | 54.89            | 1.01     |
| S048     | 1962            | 80.16    | 132.89    | 52.73            | 1.16     |
| S056     | 1962            | 73.61    | 109.88    | 36.27            | 1.5      |
| S062     | 1962            | 56.39    | 91.29     | 34.9             | 2.39     |
| S063     | 1962            | 16.28    | 44.01     | 27.73            | 2.46     |
| S141     | 1969            | 118.57   | 184.71    | 66.14            | 0.77     |

Table 6-7: Highlight from Surface Holes Drilled in the Surluga Deposit between 1960 and 1969

Note: \*Intervals listed here do not represent true thickness.

#### 6.4 Exploration Concentrated within the Southern Part of the Wawa Gold Project – 1980 to 1986

The bankruptcy of Pursides Gold Mines, and its reorganization as Citadel Gold Mines Inc. ("Citadel") in 1980, corresponds to a hiatus in development and exploration activities on the Surluga Deposit. Between 1982 and 1986, Citadel consolidated various properties from previous owners into one land package. Limited surface exploration, till sampling and geophysics (ground magnetic and VLF-EM surveys) were done by Pango Gold Mines on Citadel-Pango land package (Table 6-8).

Most of the exploration activities between 1980 and 1986 were conducted by or on behalf of Dunraine Mines Ltd. ("Dunraine") and were centered on the historical Parkhill, Van Sickle, and Grace-Darwin gold mines (Table 6-8). In 1980, Dunraine focused its efforts on drilling around the Parkhill and Van Sickle Mines. In 1981, Dunraine drilled a topographic lineament named Darwin Shear Zone that is now recognized as the extension of the Jubilee Shear Zone south of the Parkhill Fault (Table 6-9; Harper 1981a, b). Between 1982 and 1984, Dunraine continued drilling as well as trenching and surface mapping, with most of the efforts focused on the Jubilee Shear Zone and the Grace-Darwin mine with limited testing of other known gold showings south of the Parkhill fault.

Dunraine also dewatered, sampled, and mapped the upper 6 levels of the Parkhill Mine and tested the grade of the Parkhill Mine tailings (Gignac, 1983; Studemeister, 1983, 1984). Dunraine also proposed a syn-genetic gold model to explore the property. In 1986, Goldun Age Resources Inc. entered an option agreement with Dunraine in 1986 and continued the dewatering of the underground workings on the Parkhill property. The underground workings were mapped, sampled, and evaluated. Tilsley (1986) concluded that gold remained in pillars, floors, and backs of stopes, particularly above the 1<sup>st</sup> level, but that little minable material was left below the third level. He reports that, broken material and material washed from the stopes had grades comparable to the ones reported from the stopes except for material from the Mill Vein on third level, which had grades up to 3 oz per ton (102.86 g/t Au; average grade 24 g/t Au; Tilsley, 1986). Tilsley (1986) also concluded, that the mined lenses would not extend up dip to the property boundary and that there are no undiscovered lenses.

| Company                            | Year(s) | Exploration                                                                                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference                                                              |
|------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Golden Goose Gold<br>Mines Ltd.    | 1978    | Acquires Deep Lake Mine                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rupert, 1990<br>(41N15NE9036)                                          |
| Dunraine Mines Ltd.                | 1980    | 38 surface drill holes (3385.1 m); sampling of       Best intersection in D80-18: 46.22g/t         Parkhill tailings (235 samples)       Au over 0.88 m; average grade of         Parkhill tailings 0.86 g/t       Parkhill tailings 0.86 g/t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Harper, 1981a<br>(41N15NE0054)                                         |
| Golden Goose Gold<br>Mines Ltd.    | 1980    | 35 channel samples of Surface expression of Deep<br>Lake Mine Ground mag survey VLF-EM survey                                                                                                                                                 | Below detection limit to 0.91 g/t<br>(average: 0.31 g/t Au); Rupert (1980a)<br>concluded that no economic potential<br>exists at the mine.                                                                                                                                                                                                                                                                                                                                                        | Rupert, 1980a<br>(41N15NE9036)<br>Rupert, 1980b<br>(41N15NE0078)       |
| Pango Gold Mines<br>Ltd.           | 1980    | Ground mag survey                                                                                                                                                                                                                             | Ground mag and VLF-EM: no<br>significant anomalies noted; Two<br>structural/lithological features<br>identified: 1. E-W trend related to<br>metavolcanic rocks, 2. NW-SE trend<br>related to diabase dyke. Two oval<br>shaped anomalies identified, mapped<br>as gabbroic- diorite<br>intrusions                                                                                                                                                                                                  | Kuryliw, 1980<br>(41N15NE0077)<br>Piaza, 1984<br>(41N15NW0026)         |
| Dunraine Mines Ltd.                | 1981    | 20 surface drill holes on Darwin Shear Zone<br>(4919.7 m); dewatering of Parkhill mine                                                                                                                                                        | Best intersection in D81-2: 34.97 g/t<br>Au over 0.15 m                                                                                                                                                                                                                                                                                                                                                                                                                                           | Harper, 1981b<br>(41N15NE0061)                                         |
| Dunraine Mines Ltd.                | 1982    | 8 surface drill holes (410.6 m); continued dewatering of Parkhill                                                                                                                                                                             | Best intersection in D82-4: 7.61 g/t Au<br>over 1.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                             | Harper, 1982<br>(41N15NE0061)<br>Gignac, 1983<br>(41N15NE0055)         |
|                                    |         | VLF-EM survey 1 (April 19-21, 1982)                                                                                                                                                                                                           | VLF-EM survey 1: 3 conductors<br>identified, two recommended for<br>drilling                                                                                                                                                                                                                                                                                                                                                                                                                      | Kuryliw, 1982<br>(41N15NE0057)                                         |
| Pango Gold Mines<br>Ltd.           | 1982    | VLF-EM survey 2 (April-May 1982)                                                                                                                                                                                                              | VLF-EM survey 2: 10 conductive<br>anomalies identified, thought to be<br>caused by bedrock sources; IP<br>recommended as follow-up tool for<br>prioritization                                                                                                                                                                                                                                                                                                                                     | Piaza, 1984<br>(41N15NW0026)                                           |
| Northern Horizon<br>Resources Ltd. | 1981    | Ground mag survey                                                                                                                                                                                                                             | 300-ft line spacing. One horseshoe-<br>shaped magnetic anomaly identified,<br>interpreted as possible folded<br>structure                                                                                                                                                                                                                                                                                                                                                                         | Kuryliw, 1981<br>(41N15NE0524)                                         |
| Canbec Explorations<br>Ltd.        | 1983    | Ground mag survey (May 1983) VLF-EM survey<br>(May- June 1983)                                                                                                                                                                                | Ground mag survey: 5.9-line mi were<br>run at 200-ft and 400-ft line spacing,<br>with station spacing of 50 ft over 3<br>claims.<br>Results showed weak overall<br>magnetic signature, with anomalies<br>identified as diabase dykes and felsic<br>volcanic flow unit.<br>VLF-EM survey: 5.9 line-mi at 200-ft<br>and 400-ft line spacing and 100-ft<br>station spacing. One anomaly noted,<br>trending N-S and in strike with the<br>Darwin Shear. Noise related to the<br>power line was noted. | Archibald, 1983a<br>(41N15NW0029)<br>Archibald, 1983b<br>(41N15NW0029) |

#### Table 6-8: Historical Exploration during the 1980 to 1986 Period

| Company                            | Year(s) | Exploration                                                                                                             | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference                                                          |
|------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Dunraine Mines Ltd.                | 1983    | Mapping, drilling (6 drill holes; 738.2 m): 83-1 to - 6;<br>rock sampling, VLF- EM Survey                               | Outlined shear-zone hosting Au;<br>proposed syngenetic genesis; 0.9–1.8<br>m of 3.4 g/t in 3 drill holes;<br>geochemical survey indicated Au only<br>near Darwin shear VLF-EM survey:<br>Phase 1 covered the Darwin EW grid<br>extending from Moody Pit to the Darwin<br>Shear. Phase 2 covered<br>southern half of Darwin Shear. The<br>northern half of the Darwin Shear was<br>not able to be surveyed due to<br>remanence of the power and<br>telephone lines; 5 conductors were<br>found in the vicinity of the Darwin Mine;<br>The Darwin Shear was noted to be a<br>conductive structure, and areas where<br>E-W striking conductors<br>intersect the structure were<br>considered prospective. Geochemical<br>surveys were recommended for<br>follow-up                                     | Studemeister, 1983<br>(41N15NE0041)                                |
| Northern Horizon<br>Resources Ltd. | 1983    | Dighem III FDEM                                                                                                         | April 1-4, 1983, 298 line-km and 300 m<br>line spacing, 30 m EM sensor height,<br>45 m mag sensor height. 20 anomalies<br>identified as moderate-<br>high priority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Smith and<br>Dvorak,1983<br>(42C02SE0505)                          |
| Pango Gold Mines<br>Ltd.           | 1984    | Till sampling: 47 overburden holes                                                                                      | Anomalous zones near faults and<br>shears identified but no economic<br>significance attributed to anomalies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gillis, 1984<br>(41N15NW0027)                                      |
| Monte Christo<br>Resources         | 1984    | Ground mag survey VLF-EM Survey Geologic<br>mapping EM-17 HLEM<br>3 drill holes targeting conductors (W-1, -2, -2A, -3) | Ground mag and VLF-EM survey:<br>Completed on 11 claims in Feb 1984<br>and April 1984. A total of 18.7 line-mi of<br>mag data and 16 line-mi of VLF-EM<br>data were collected. One large<br>conductive anomaly was found to be<br>high priority and recommended for drill<br>testing with three drill holes Geologic<br>mapping: shear zones identified during<br>mapping.<br>EM-17 HLEM: July 1984. 6 line-mi<br>collected at 300-ft coil separation, as<br>a follow-up survey on the conductors<br>identified by the VLF survey. Weak<br>HLEM conductors were noted in the<br>same trend, interpreted as a possible<br>shear zone, and were recommended<br>for drilling.<br>Drilling: one drill holes intersected<br>shear zone with "consistent<br>anomalous gold values," two were<br>abandoned | Kuryliw, 1984a<br>(41N15NE0048)<br>Kuryliw, 1984b<br>(41N15NE0064) |
| Dunraine Mines Ltd.                | 1984    | 5 surface drill holes (887.9 m)                                                                                         | 10.29 g/t Au over 0.3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Studemeister, 1984<br>(41N15NE0046)                                |

| Year | No. of Drill<br>Holes | Total<br>Metres | Best Intersection*       | Main Target of Program        |
|------|-----------------------|-----------------|--------------------------|-------------------------------|
| 1980 | 38                    | 3,385.10        | 46.22 g/t Au over 0.88 m | Parkhill and Van Sickle mines |
| 1981 | 20                    | 4,919.70        | 34.97 g/t Au over 0.15 m | Darwin Shear Zone             |
| 1982 | 8                     | 410.6           | 7.61 g/t Au over 1. 5 m  | Darwin Shear Zone             |
| 1983 | 6                     | 738.2           | 5.96 g/t Au over 1.5 m   | Grace-Darwin Mine             |
| 1984 | 5                     | 887.9           | 10.29 g/t Au over 0.3 m  | Grace-Darwin Mine             |

| Table 6-9. Historical Drilling | w Dunraina Minas an t | the Wawa Gold Project du    | ring the 1920 to 1926 Deriod |
|--------------------------------|-----------------------|-----------------------------|------------------------------|
|                                |                       | lile wawa Golu i i ojeci ul |                              |

Note: \*Intervals listed do not represent true thickness.

## 6.5 Second Mining of the Surluga Mine by Citadel Gold Mines – 1986 to 1991

#### 6.5.1 Citadel Gold Mines

In 1986, the Surluga mine was dewatered, the Surluga mine shaft was refurbished, and the mill was reconstructed. A 3-year program of surface and underground drilling was started, including a mapping program throughout the Surluga Deposit as part of the restarting of the mining operation (Table 6-10 to Table 6-13; Rupert, 1997). In 1988, to optimize its exploration and development model of the Surluga Mine, Citadel commissioned a study of the structural setting of the Surluga deposit. Helmstaedt (1988) concluded that the quartz-gold veins predate some of the ductile shear movement along the Jubilee Shear Zone and that the geometry of the highgrade zone of the deposit is controlled by a strong stretching lineation in the shear zone. Helmstaedt (1988) described the stretching lineation as shallowly plunging to the S-SE. Citadel also commissioned an ore recovery study, including gravity concentration by various means, flotation, and cyanidation (Lakefield Research, 1988). Cyanidation recovered ~90% of the gold, sulphide flotation ~86%. Gravity concentration using the Knelson Concentrator was unsuccessful but upgrading gravity with a Mozley Mineral Separator recovered +20% of contained gold. Mining in the Surluga Deposit stopped again, in 1989 because of the mill inefficiency, the unoptimized design of the mine, including the difficulties of mechanizing production and problems with dilution control because of the cryptic boundaries of the high-grade zone (E. Hoffman, pers. Comm.). One exploration success following the end of the mining operations in 1989 was the discovery of the Old Tom zone, in the southernmost part of the Surluga Deposit.

During the Surluga Mine operation and development, between 1986 and 1990, Citadel also undertook an extensive exploration program of its property to find additional gold to feed the newly constructed mill. This included diamond drilling of Root and Cooper-Ganley vein systems, stripping, trenching, channel sampling and geological mapping, as well as many airborne and ground geophysical surveys. Citadel also continued the consolidation of the Wawa Gold Property by optioning the Henderson property east of Leroy Lake in the southeast corner of McMurray Township in 1987. Osmani (1987) mapped the property and concluded that the mineralization was independent of rock-type and structurally controlled. He recommended further exploration including geophysical surveys, mapping, and prospecting on the property. In 1987, Citadel purchased from Dunraine the Parkhill and Grace-Darwin Mine properties (Rupert, 1997)

| Company                           | Year      | Exploration                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference                                                                                                                                                                                                |
|-----------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citadel Gold Mines                | 1986-1987 | Surluga mine dewatered; underground<br>development; surface and underground drilling.<br>Mill refurbished; mapping/sampling on Henderson<br>property (SE McMurray Twp.)                                                                                                                                                                                                                                                                        | Drilling: Intersected 20.42 m at 3.74 g/t Au<br>Dighem III: 454 line-km flown with Dighem III FDEM in<br>October 1986. Several discrete bedrock conductors<br>identified and recommended for follow-up work.<br>Mineralization independent of host rock but structurally<br>controlled (140°–160°, 010°–060°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rupert, 1997<br>Kilty, 1986<br>(42C02SE0504)<br>Osmani, 1987<br>(41N15NW0028)                                                                                                                            |
| Robert Henderson                  | 1986      | Dighem III Survey Terraquest airborne mag VLF-<br>EM survey                                                                                                                                                                                                                                                                                                                                                                                    | Terraquest fixed-wing airborne magnetic and VLF-EM<br>survey flown July 22, 1986. 100 line-km at 200 m line<br>spacing and 100 m terrain clearance. Several structural and<br>conductive anomalies were located and<br>recommended for follow-up surveying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Barrie, 1986<br>(41N15NE0033)                                                                                                                                                                            |
| Allied Northern<br>Resources Ltd. | 1988      | Mapping, rock sampling<br>Ground mag VLF-EM survey 1 Ground mag VLF-<br>EM survey 2 Ground mag VLF-EM survey 3                                                                                                                                                                                                                                                                                                                                 | Mapping, rock sampling: six rock types observed and described; various quartz veins observed (no assay results available)<br>Ground mag, VLF-EM survey 1: Aug 12-Sept 17, 1988.<br>19.25 line-km of ground mag and VLF-EM collected.<br>Ground mag station spacing = 25 m. Magnetic results highlight diabase dykes and geologic contacts. VLF-EM results identified 2 high-priority conductors Ground mag, VLF-EM survey 2: Aug 12-Dec 10, 1988. A total of 50.85 line km of ground mag and VLF-EM were conducted on 31 claims at 120 m line spacing. No significant anomalies were identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sears and<br>Gasparetto, 1988<br>(41N15NE0027)<br>Sears, 1989<br>(41N15NW0021)<br>Sears and<br>Gasparetto, 1989<br>(41N15NW0022)                                                                         |
| Citadel Gold Mines                | 1988      | Ore recovery studies Structural studies                                                                                                                                                                                                                                                                                                                                                                                                        | Cyanidation recovered 90% of the gold, flotation 86%<br>Gold-bearing quartz veins predate shearing along Jubilee<br>Zone<br>High-grade zone geometry and distribution in Jubilee<br>Shear Zone controlled by stretching lineation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lakefield<br>Research,1988<br>Helmstaedt, 1988                                                                                                                                                           |
| Citadel Gold Mines                | 1988-1990 | Exploratory underground development;<br>Underground and Surface drilling; Panel sampling<br>in Surluga mine;<br>Ground mag survey IP survey 1<br>Ground mag survey 2 Ground mag survey 3<br>Surluga mine closed in 1989<br>Extensive surface exploration program<br>throughout the property.<br>Reinterpretation of geophysical surveys,<br>Trenching; mapping in Deep Lake area,<br>Acquisition of Parkhill and Grace-Darwin from<br>Dunraine | Discovery of Old Tom and Peter Zones in the southern<br>extremity of Surluga Deposit;<br>Ground mag survey 1: Summer 1988 on Block B to<br>establish base data for future mapping.<br>IP survey 1: Pole-dipole and gradient array methods in time-<br>domain IP mode. Results found the shear zone was not<br>distinguishable from background<br>Ground mag survey 2: June-July 1988. Targeted follow-up<br>of anomalies on Block C. Line spacing 400 ft. Several<br>magnetic anomalies were identified.<br>Ground mag survey 3: Dec 1988 – Mar 1989. Ground<br>magnetic survey conducted at 400-ft line spacing to<br>improve resolution of airborne magnetic anomaly. The<br>anomaly was interpreted as iron formation.<br>Geophysics deemed of "marginal utility" but soil sampling<br>effective.<br>Stripping and/or sampling, and geological mapping of<br>Minto, Mariposa, Parkhill, Grace-Darwin, Darwin Shear<br>Zone<br>Drilling and stripping of Root and Cooper Ganley.<br>Regional exploration throughout the property anomalous<br>Au grades in Deep Lake area but economic questionable<br>(best results 0.41 ct/ 4 u) | Rupert and Leroy,<br>1989<br>(42C02SE0220)<br>Rupert, 1989a<br>(41N15NE0023)<br>Rupert, 1989b<br>(41N15NE0021)<br>Rupert, 1990<br>(42C02SE0500)<br>Reed, 1990<br>(42C02SE0500, p.<br>27)<br>Rupert, 1997 |

### Table 6-10: Historical Exploration and Mining Activity during the Second Development of the Surluga Mine

| Company                           | Year | Exploration                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                       | Reference                                                                                       |
|-----------------------------------|------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Allied Northern<br>Resources Ltd. | 1989 | Mapping                                                              | Mapping: 4 target areas delineated                                                                                                                                                                                                                                                                                                                                                                            | Sears, 1989<br>(41N15NW0021)                                                                    |
| Allied Northern<br>Resources Ltd. | 1990 | Mapping, soil, and rock sampling, 6 drill holes (AN-<br>90-1 to 6)   | 3 vein systems located, several weak soil anomalies;<br>drilling intersected the Villeneuve vein                                                                                                                                                                                                                                                                                                              | Sears, 1990b<br>(41N15NE0014)<br>Sears, 1990c<br>(41N15NE0013)<br>Sears, 1990e<br>(41N15NE0025) |
| Van Ollie Exploration<br>Ltd.     | 1990 | Mapping, soil geochemistry, drilling Ground mag<br>and VLF-EM survey | Mapping, soil geochemistry, drilling: more Au anomalies in<br>soil over intrusive rocks than volcanic rocks; down dip of<br>Mickelson vein system confirmed<br>Mag, VLF-EM: Jan 11-Feb 4, 1990. 41.1 line-km of<br>magnetic data and 38.1 line-km of VLF-EM data collected.<br>Several magnetic and conductive anomalies were<br>identified from the respected surveys and recommended<br>for follow-up work. | Sears, 1990a<br>(41N15NE0011)<br>Sears, 1990d<br>(41N15NE0016)<br>Reid, 1990<br>(41N15NE0011)   |
| Van Ollie Exploration<br>Ltd.     | 1991 | 6 drill holes (195.76 m) on Sunrise #1 vein (S-91- 0<br>to -6)       | Best assays between 1.23 and 4.87 g/t Au but no intervals reported                                                                                                                                                                                                                                                                                                                                            | Delisle,<br>1991(41N15NE00<br>69)                                                               |

Table 6-11: Historical Surface Diamond Drill Holes from the Second Development Stage of the SurlugaMine

| Company | Year<br>Drilled | No. of Drill<br>Holes | Meterage<br>(m) |
|---------|-----------------|-----------------------|-----------------|
| Citadel | 1987            | 100                   | 18,089.94       |
| Citadel | 1988            | 30                    | 4,879.91        |
| Citadel | 1989            | 51                    | 6,812.36        |

| Table 6-12: Historical Underground Diamond Drill Holes from the Second Development Stage of t | the |
|-----------------------------------------------------------------------------------------------|-----|
| Surluga Mine                                                                                  |     |

| Company | Year<br>Drilled | No. of Drill<br>Holes | Meterage<br>(m) |
|---------|-----------------|-----------------------|-----------------|
| Citadel | 1987            | 396                   | 12,430.43       |
| Citadel | 1988            | 9                     | 669.95          |
| Citadel | 1989            | 55                    | 3,205.27        |

| Hole No. | From<br>(m) | To<br>(m) | Interval<br>(m)* | Au<br>(g/t) |
|----------|-------------|-----------|------------------|-------------|
| S204     | 147.22      | 202.24    | 55.02            | 1.55        |
| S232     | 177.09      | 221.29    | 44.2             | 3.88        |
| S240     | 46.63       | 74.22     | 27.59            | 4.29        |
| S273     | 187.76      | 230.74    | 42.98            | 2.82        |
| S274     | 194.98      | 247.2     | 52.22            | 1.56        |
| S279     | 146.55      | 168.55    | 22               | 2.74        |
| S280     | 199.65      | 244.3     | 44.65            | 1.73        |
| S285     | 112.47      | 167.03    | 54.56            | 1.42        |
| S290     | 213.66      | 255.73    | 42.07            | 1.77        |
| S307     | 290.93      | 347.48    | 56.55            | 1.57        |
| S327     | 43.89       | 66.14     | 22.25            | 2.56        |

 Table 6-13: Highlights from Citadel Surface Drilling on the Surluga Deposit between 1987 and 1989

Note: \*Intervals listed do not represent true thickness.

#### 6.5.2 Van Ollie Exploration

Between 1989 and 1991, Van Ollie Exploration Ltd. ("Van Ollie") conducted an extensive exploration program around the Sunrise-Mickelson vein system and the Van Sickle mine; that included diamond drilling, stripping, channel sampling and surface mapping. Several veins, including the Van Sickle Vein, Captain Vein and Road Vein, were stripped. Mapping, prospecting, and rock sampling delineated several targets that correspond with zones of soil and geophysical anomalies. The Van Sickle vein system was traced for 200 m and Sears (1990a) concluded it was the extension of the Park Hill vein system.

Van Ollie drilled thirty-one diamond drill holes totalling 1,445.88 m in 1989, thirty-four diamond drill holes totalling 1,447.22 m in 1990 and six diamond drill holes totalling 195.76 m in 1991 (Table 6-14, Table 6-15). The drilling targeted the Van Sickle, Mickelson, and Captain Veins. In 1991, Van Ollie drilled six diamond drill holes totalling 195.76 m at the Sunrise No. 1 Vein (Delisle, 1991). The best assay results ranged from 1.23 g/t Au to 4.87 g/t Au; however, the intervals for these grades were not reported in Delisle (1991).

| Company   | Year<br>Drilled | No. of Holes | Meterage<br>(m) |
|-----------|-----------------|--------------|-----------------|
| Van Ollie | 1989            | 31           | 1,445.88        |
| Van Ollie | 1990            | 34           | 1,445.22        |
| Van Ollie | 1991            | 6            | 196.76          |

Table 6-14: Historical Surface Diamond Drill Holes Drilled by Van Ollie

| Hole No.  | From (m) | To (m) | Interval<br>(m)* | Au (g/t) | Target          |
|-----------|----------|--------|------------------|----------|-----------------|
| VO-89-01  | 1.83     | 2.19   | 0.36             | 142.42   | Van Sickle Mine |
| VO-89-01  | 1.22     | 1.52   | 0.3              | 44.91    | Van Sickle Mine |
| VO-89-01  | 2.49     | 2.8    | 0.31             | 17.55    | Van Sickle Mine |
| VO-89-02  | 6.76     | 6.91   | 0.15             | 38.19    | Van Sickle Mine |
| VO-89-04  | 27.74    | 27.91  | 0.17             | 34.9     | Van Sickle Mine |
| VO-89-10  | 45.54    | 45.62  | 0.08             | 11.86    | Mickelson       |
| VO-89-12  | 28.65    | 28.93  | 0.28             | 10.08    | Mickelson       |
| VO-89-14  | 2.97     | 3.15   | 0.18             | 57.12    | Van Sickle Mine |
| VO-89-14  | 5.31     | 5.54   | 0.23             | 32.57    | Van Sickle Mine |
| VO-89-14  | 5.87     | 6.1    | 0.23             | 14.67    | Van Sickle Mine |
| VO-89-23  | 31.55    | 31.85  | 0.3              | 75.43    | Mickelson       |
| VO-89-23  | 30.23    | 30.3   | 0.07             | 41.73    | Mickelson       |
| VO-89-24  | 16.74    | 17.22  | 0.48             | 81.63    | Mickelson       |
| VO-90-39  | 10.62    | 10.72  | 0.1              | 109.89   | Van Sickle Mine |
| VO-90-43  | 34.31    | 34.44  | 0.13             | 28.77    | Mickelson       |
| VO-90-45  | 12.32    | 12.75  | 0.43             | 14.64    | Van Sickle Mine |
| VO-90-50  | 32.74    | 32.92  | 0.18             | 20.95    | Van Sickle Mine |
| VO-90-51  | 29.41    | 30.48  | 1.07             | 46.87    | Mickelson       |
| VO-90-51  | 28.19    | 29.41  | 1.22             | 29.01    | Mickelson       |
| VO-90-53  | 37.85    | 38     | 0.15             | 53.55    | Mickelson       |
| VO-90-63  | 13.01    | 13.14  | 0.13             | 23.55    | Mickelson       |
| VO-S-91-6 | 8.73     | 8.93   | 0.2              | 14.71    | Sunrise         |

Table 6-15: Intersection Highlights from Historical Holes of Van Ollie

Note: \*Intervals listed do not represent true thickness.

#### 6.5.3 Allied Northern Resources

In 1988, Allied Northern Resources completed a geological (mapping and sampling) and geophysical (magnetics and VLF-EM) survey (Sears and Gasparetto, 1988). Several quartz veins were found, but assay data is not available. In 1990, Allied Northern Resources completed small exploration programs on their claims in the southern part of McMurray Township at the boundary of McMurray Township with Rabazo and Naveau townships. The program consisted of prospecting, stripping, rock and soil sampling and mapping (Sears, 1990b). Three quartz-carbonate veins and several weak soil anomalies in the eastern part of the property were delineated. One of the veins had low gold values. In addition, six diamond drill holes totalling 320.95 m were drilled (Sears, 1990c). All six drill holes intersected the Villeneuve vein system (Sears, 1990e).

#### 6.6 Optioning of the Surluga Deposit – 1990 to 1996

The optioning period marks a contrasted transition in the evaluation and exploration model of the Project (Table 6-17). Following the difficulties of selective underground mining, this period represents the first attempts to quantify if a large tonnage and lower grade resource amenable to open pit mining exists on the Project.

#### 6.6.1 Pan Orvana Resources Inc. – 1990 to 1992

Pan Orvana Resource Inc. ("Pan Orvana") entered into an option agreement with Citadel to evaluate the Surluga Deposit. Between 1990 and 1992, Pan Orvana reviewed historical information including drilling. Pan Orvana also completed a soil sampling survey that delineated an Au anomaly over the main shear zone, sampled the underground workings of the Jubilee Mine after dewatering the mine and sampled unsampled sections of a selection of historical holes (Bradshaw, 1991). The best intersection in unsampled material in the Jubilee Shear Zone was in hole S240 in which unsampled core contained 5.04 g/t gold over 5.18 m. From the limited sampling they have done, Bradshaw (1991) also observed that 10% of the unsampled core in the Jubilee Shear Zone contains over 0.684 g/t gold. Bradshaw (1991) concluded based on the underground sampling that "significant gold grades" were left in the margins of the Jubilee Mine workings, and that the grade, thicknesses and sub-cropping nature of the Surluga Deposit are favorable for open pit mining, but that additional work remains to define a viable resource. Pan Orvana dropped the option in 1992.

#### 6.6.2 Goldbrook Exploration Limited – 1996 to 1997

In 1996, Goldbrook Exploration Limited ("Goldbrook") entered into an option agreement with Citadel to evaluate the Surluga Deposit. Bowdidge (1996) reviewed all the available data for the Surluga Deposit and postulated that the Jubilee Shear Zone is a large-scale structure up to 150 ft thick and contains widespread low-grade mineralization. Using only the surface hole results, Bowdidge evaluated that a substantial resource of low-grade mineralization existed in the Jubilee Shear Zone (Table 6-18). However, following Part 2.4 of the NI 43-101 Standards of Disclosure for Mineral Projects, the QP has not completed any work to classify this historical estimate as a current Mineral Resource or Mineral Reserve; and as such, Red Pine is not treating this historical estimate as a current Mineral Resource or Mineral Reserve. This historical estimate does not state Mineral Resource (May 2014) and the QP is unaware of what key assumptions, parameters or methods were used to prepare this historical estimates are stated in Item 14.0 of this Report. Because Goldbrook was unable to raise funds under market conditions to meet their financial commitments, Citadel dropped the option with Goldbrook in 1997 (Rupert, 1997).

| Company                                          | Year      | Exploration                                                                | Results                                                                                                                                                                                                                                                                                                                                               | Reference                       |
|--------------------------------------------------|-----------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Pan-Orvana (option<br>agreement with<br>Citadel) | 1990-1992 | Soil sampling, review of historical data; sampling of underground workings | Au anomaly over the shear zone;<br>sampling revealed "considerable<br>variability" in gold content of the shear<br>zone; Sampling of unsampled<br>historical holes uncovered 5.04 g/t<br>gold over 5.18 m in S240. Possibility<br>that sufficient low-grade resources<br>available; Additional work necessary<br>to define a viable open pit resource | Bradshaw, 1991<br>(42C02SE0518) |
| Goldbrook Exploration<br>Limited                 | 1996-1997 | Review of historical data; Resource evaluation in the Surluga Deposit      | A substantial resource of low-grade<br>mineralization exists in the Jubilee<br>Shear Zone; Citadel revoked the<br>option in 1997 as Goldbrook did not<br>meet the financial commitments                                                                                                                                                               | Bowdidge, 1996<br>Rupert, 1997  |

#### Table 6-16: Historical Work Performed during the Optioning Period of the Surluga Deposit

#### Table 6-17: Historical Resource Estimate for the Surluga Deposit by Bowdidge (1996)

| Cut-off Grade<br>(g/t Au) | Tonnes    | Au (g/t) |  |
|---------------------------|-----------|----------|--|
| 1.03                      | 9,319,000 | 1.75     |  |
| 1.54                      | 6,594,000 | 2.02     |  |

Note: This Mineral Resource estimate is historical in nature and the QP has not completed sufficient work to classify this historical estimate as a current Mineral Resource; and therefore, it should not be relied upon. Current Mineral Resource estimates are stated in Item 14.0 of this Report.

#### 6.7 Recent Period – Redevelopment of the Surluga Deposit 2007 to 2016

The period between the end of extensive exploration activity in 1991 and the resumption of the drill programs focused on gold exploration in 2007 only saw sporadic and smaller-scale exploration programs completed (Table 6-18). In 1997, Citadel acquired the properties of Van Ollie exploration, including the Sunrise-Mickelson vein systems and the Van Sickle mine (Rupert, 1997). Following 2007, the Surluga Deposit and its surroundings have seen rejuvenated exploration.

| Company                                          | Year      | Exploration                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference                                                                                                                                 |
|--------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Transgold<br>Exploration and<br>Investment Inc.  | 1994-1995 | Mapping, sampling (1994); VLF-EM survey<br>HLEM survey Ground mag survey Prospecting,<br>rock/soil sampling (1995) in Leroy Lake area | No significant Au results in 1994;<br>weak B-horizon soil anomaly (57<br>ppb) All ground geophysics<br>conducted between July -September<br>1995, on a 100 m line-spaced grid.<br>VLF-EM: 25 m station spacing,<br>HLEM: 25 m<br>station spacing, Ground mag: 12.5 m<br>station spacing. Several anomalies<br>were identified from these surveys<br>and displayed on related maps.                                              | Drost, 1994<br>(41N15NE0004)<br>Drost, 1995<br>(41N15NE0029)                                                                              |
| Lawrence Melnick                                 | 1995-1996 | VLF-EM survey Ground mag survey                                                                                                       | VLF-EM: Oct 1995. Line spacing 100<br>m, station spacing 25 m. One<br>conductive anomaly was identified.<br>Ground mag survey: Oct 1996. Line<br>spacing 60 m, station spacing 30 m.<br>2 anomalies identified as high priority<br>for follow-up                                                                                                                                                                                | Archibald, 1996b<br>(42C02SE0026)                                                                                                         |
| Elliot Feder                                     | 1996-1998 | VLF-EM survey Ground mag survey Till sampling                                                                                         | VLF-EM: Oct 1996. 12.2 line-km<br>collected, 100 m line spacing, 25 m<br>station spacing. 3 anomalies<br>identified as possible shear zones,<br>recommended for follow-up Ground<br>mag survey: Oct 1996. 12.2<br>line-km. Anomalies identified related<br>to Firesand Carbonatite Complex Till<br>sampling: 1997-1998. Gold-bearing<br>vein averaging 8.7 g/t Au located in<br>southern and northern parts of<br>McMurray Twp. | Archibald, 1996a<br>(42C02SE0022)<br>Thomas, 1997a<br>(42C02SE2001)<br>Thomas, 1997b<br>(42C02SE2002)<br>Archibald, 1998<br>(42C02SE2003) |
| Transgold<br>Exploration and<br>Investment Inc.  | 1998      | IP survey                                                                                                                             | IP test survey on weak VLF-EM<br>anomalies. Time domain IP survey.<br>Dipole-dipole array, a spacing = 25<br>m, N = 1-3. Three chargeable<br>features were identified and                                                                                                                                                                                                                                                       | Anderson, 1998<br>(41N15NE2002)                                                                                                           |
| John Leadbetter                                  | 1998-2000 | Beepmat survey Prospecting and sampling near<br>Deep Lake                                                                             | No conductors; best Au assay: 442<br>ppb                                                                                                                                                                                                                                                                                                                                                                                        | Leadbetter, 1998<br>(41N15NE2003)<br>Leadbetter, 2000<br>(41N15NE1005)                                                                    |
| Tri Origin (option<br>Agreement with<br>Citadel) | 2000      | 6 drill holes(789 m), ground geophysics                                                                                               | Best Au assay: 609 ppb over 1.3 m                                                                                                                                                                                                                                                                                                                                                                                               | Gow, 2004                                                                                                                                 |
| 3814793<br>Canada Inc. P.L.<br>Mousseau          | 2004      | Ground mag survey VLF-EM survey                                                                                                       | Between Oct 15, 2003, and July 18,<br>2004,<br>Ground mag survey: 62.2 line-km. 25<br>m and 50 m line spacing, 15 m<br>station spacing. Ground magnetic<br>results have been used to further<br>delineate airborne anomalies and<br>outcrops.<br>VLF-EM survey: 24.5 line-km, 50 m<br>line spacing, 15 m station spacing.<br>Anomalies identified were interpreted<br>to be associated with fault and shear<br>systems)         | Archibald, 2004<br>(42C02SE2014)                                                                                                          |

#### Table 6-18: Exploration Programs of the 1991 to 2007 Period

#### 6.7.1 Wawa General Partnership – 2007

In 2007, the Wawa General Partnership, on behalf of Citabar and following the geological modelling of the interpreted deeper extension of the structure, completed a 8,401-m NQ-size diamond drill targeting the down dip extension of the Jubilee shear zone (Table 6-19 and Table 6-20; Gow, 2011). This drilling program successfully intersected the down-dip extension of the structure and the best results achieved are of potential economic interest, especially the 3.40-m intersection at 11.40 g/t Au in drill hole 07-391 (Gow, 2011). Hole 07-385 completed during the 2007 drilling program also uncovered the extension of the Minto vein down-plunge of the former Minto Mine, which led in 2017 to the discovery of the Minto Mine South Deposit.

However, during the drill program, Citabar determined it had insufficient storage space for all the drill core generated and a decision was taken to dispose of most of the core that was considered un-mineralized based on the logging. Scott Wilson from RPA in 2011 indicates that this disposal of the core was regrettable, considering the many problems identified with the logging and sampling procedures applied during the 2007 drilling program (Gow, 2011). Gow (2011) also concluded that a twinning program of historical holes was necessary to confirm the results from the historical holes before a resource evaluation was undertaken. Down-hole survey data are also not available for holes 07-383 and 07-384, the two first holes completed during the program.

| Company      | Year    | No. of Drill | Meterage |
|--------------|---------|--------------|----------|
|              | Drilled | Holes        | (m)      |
| Wawa GP Inc. | 2007    | 14           | 8,410.20 |

#### Table 6-19: Surface Diamond Drill Holes from the 2007 Drilling Program

| Hole No.  | From<br>(m) | To<br>(m) | Interval<br>(m)* | Au<br>(g/t) |
|-----------|-------------|-----------|------------------|-------------|
| 07-383    | 452         | 453.9     | 1.9              | 6           |
| including | 452.6       | 453.4     | 0.8              | 11.2        |
| 07-384    | 555.06      | 562.2     | 7.14             | 1.18        |
| including | 555.6       | 555.8     | 0.2              | 13.39       |
|           | 564.4       | 576.4     | 12               | 1.15        |
| including | 569.7       | 570.15    | 0.45             | 5.49        |
| 07-385    | 61.1        | 62.4      | 1.3              | 10.38       |
| 07-386B   | 586         | 590       | 4                | 2.06        |
| including | 586         | 587.2     | 1.2              | 6.22        |
| 07-387    | 476.1       | 485.5     | 9.4              | 1.78        |
| including | 480.7       | 481.7     | 1                | 3.37        |
| including | 483.5       | 484.5     | 1                | 4.61        |
| 07-388    | 48.25       | 49.18     | 0.93             | 4.28        |
|           | 507.35      | 508.2     | 0.85             | 1.35        |
| 7-389     | 559.6       | 562.6     | 3                | 7.24        |
| 7-391     | 600.9       | 604.3     | 3.4              | 11.44       |
| 7-392     | 844.1       | 844.6     | 0.5              | 5.12        |
| 7-393     | 680.5       | 680.9     | 0.4              | 4.5         |
|           | 691.1       | 692.8     | 1.7              | 10.67       |
|           | 734.2       | 735.7     | 1.5              | 5.73        |
| 07-393B   | 686.25      | 688.8     | 2.55             | 6.21        |
| including | 686.25      | 686.4     | 0.15             | 93.7        |
|           | 716.8       | 717.6     | 0.8              | 10.95       |
| 07-394    | 558.1       | 559.2     | 1.1              | 7.92        |
|           | 51.1        | 52.1      | 1                | 8.68        |

#### Table 6-20: Selected Assay Highlights for Wawa GP's 2007 Drilling Program

Note: \*Intervals listed here do not represent true thickness.

#### 6.7.2 Augustine Ventures Inc. – 2009 to 2014

Augustine acquired the Surluga Project pursuant to the terms of an option agreement (the "Option Agreement"), dated April 16, 2009, entered into between Citabar, Citadel Gold Mines Inc. ("Citadel"), Delta Uranium Inc. ("Delta") and Delta Precious Metals (Ontario) Inc. ("DPMI"), and also pursuant to the terms of an assignment agreement (the "Assignment Agreement"), dated September 15, 2010, entered into between Delta, DPMI, Citadel, Citabar and the Company. Pursuant to the terms of the Assignment Agreement, Citabar and Citadel consented to Delta and DPMI assigning their rights under the Option Agreement to the Company, whereby Delta and DPMI grant the Corporation the exclusive right to earn an undivided 60% interest in the Surluga Project (Augustine Ventures MDA, July 24, 2015).

In September 2010, Augustine Ventures Inc. (Augustine) satisfied the conditions and assumed the obligations of Delta PM and Delta Uranium Inc.

In January 2011, Augustine contracted Geotech Ltd. To collect 412 line-km of helicopter-borne Versatile Time Domain Electromagnetic data ("VTEM") at 100-m line spacing (Duke, 2012). Several magnetic-conductive

features were noted within the survey to coincide with the Parkhill fault. Six conductive anomalies were identified as potential follow-up targets (Duke, 2012).

In 2011, Augustine drilled 2,944 m in 18 diamond drill holes (core diameter: NQ; Table 6-21and Table 6-22). The purpose of the drilling was to confirm historical drilling results (13 drill holes) and define the mineralization around the Jubilee mine (5 drill holes; Duke, 2012). The holes were surveyed every 10 m using a Flex-IT down-hole survey tool. Twelve of the holes twinned historical holes. The twin holes did not reproduce the results of the historical database. Duke (2012) concluded that the nugget effect cannot be used to explain the discrepancy between the two data sets, which remained unexplained.

| Table 6-21: Augustine's | 2011 Drilling Program |
|-------------------------|-----------------------|
|-------------------------|-----------------------|

| Company            | Year    | No. of Drill | Meterage |
|--------------------|---------|--------------|----------|
|                    | Drilled | Holes        | (m)      |
| Augustine Ventures | 2011    | 18           | 2,944    |

| Hole No.  | From (m) | To (m) | Interval<br>(m)* | Au (g/t) |
|-----------|----------|--------|------------------|----------|
| AV-11-002 | 91.81    | 93.38  | 1.57             | 5.67     |
|           | 97.09    | 103.58 | 6.49             | 1.94     |
| including | 98.58    | 99.17  | 0.59             | 7.24     |
| AV-11-05  | 171.17   | 173.66 | 2.49             | 2.87     |
| including | 171.56   | 172.05 | 0.49             | 5.85     |
| AV-11-006 | 133      | 136.59 | 3.59             | 7.03     |
| including | 133.56   | 134.12 | 0.56             | 21.87    |
| AV-11-007 | 35.19    | 37.7   | 2.51             | 2.83     |
| including | 35.92    | 36.17  | 0.25             | 17.32    |
| AV-11-008 | 30.56    | 36.6   | 6.04             | 3.23     |
| including | 31.28    | 31.8   | 0.52             | 10.69    |
| and       | 32.5     | 32.93  | 0.43             | 8.83     |
| AV-11-009 | 45.23    | 53.17  | 7.94             | 5.33     |
| including | 46.15    | 46.46  | 0.31             | 43.77    |
| and       | 51.3     | 51.74  | 0.44             | 8.82     |
| AV-11-010 | 162.92   | 164.6  | 1.68             | 20.18    |
| AV-11-011 | 48.17    | 51.77  | 3.6              | 3.76     |
| AV-11-012 | 161.54   | 171.44 | 9.9              | 1.93     |
| including | 161.54   | 161.98 | 0.44             | 14.36    |
| and       | 170.15   | 170.55 | 0.4              | 10.47    |
| AV-11-14  | 126.85   | 135.75 | 8.9              | 3.09     |
| including | 133.3    | 133.7  | 0.4              | 23.14    |
| and       | 134.16   | 134.62 | 0.46             | 11.19    |
|           | 144.68   | 145.42 | 0.74             | 22.77    |
| AV-11-15  | 190.74   | 219.65 | 28.91            | 2.57     |
| AV-11-16  | 155.92   | 161.39 | 5.47             | 3.06     |
| AV-11-18  | 147.55   | 156.84 | 9.29             | 2.6      |

 Table 6-22: Assay Highlights for Augustine's 2011 Drilling Program

Note: \*Intervals listed here do not represent true thickness.

Subsequently, Augustine commissioned Watts, Griffis and McOuat Consulting Geologists and Engineers ("WGM") to complete a resource estimate that included Augustine's current and previous drill holes (Duke, 2012). WGM estimated the Surluga deposit contained 32.2 million tonnes (Mt) grading 1.14 g/t Au (cut-off: 0.2 g/t Au) classified as an inferred resource. The historical estimate should no longer be relied upon as it has been superseded by the

current estimate (Item 14: Mineral Resource Estimates), which upgraded the historical estimate. The historical estimate used the categories set out in the CIM Definition Standards on Mineral Resources and Mineral Reserves (May 2014). The estimate was completed using ordinary kriging and validated using the inverse distance method. Red Pine is not treating the historical estimate as current, because the QP has not completed sufficient work to classify the historical estimate as current.

Augustine also collected 200 grab samples on the property in 2011. Table 6-23 lists samples with >1 g/t Au. Although Augustine completed a Lidar survey, no details of the survey (year, contractor, survey parameters, and so forth) are known to the company.

| Sample No. | Easting | Northing | Au (g/t) | Location |
|------------|---------|----------|----------|----------|
| 1003978    | 668180  | 5315784  | 14.03    | Minto    |
| 1003953    | 668166  | 5315867  | 8.3      | Minto    |
| 1003903    | 668382  | 5315387  | 5.64     | Minto    |
| 1003920    | 668242  | 5315144  | 3.95     | Minto    |
| 1003894    | 668397  | 5315385  | 2.96     | Minto    |
| 1003963    | 668242  | 5315971  | 2.06     | Minto    |
| 1003976    | 668170  | 5315779  | 1.88     | Minto    |
| 1003873    | 668447  | 5315431  | 1.49     | Minto    |
| 1003921    | 668243  | 5315145  | 1.27     | Minto    |

| Table 6-23: Assay | <sup>,</sup> Highlights | of the Grab | Samples | Collected b | y Augustine | in 2011 |
|-------------------|-------------------------|-------------|---------|-------------|-------------|---------|
|-------------------|-------------------------|-------------|---------|-------------|-------------|---------|

#### 6.7.3 2015 Mineral Resource Estimate

Red Pine commissioned Ronacher Mckenzie Geoscience and SRK Consulting to complete a NI 43-101 Mineral Resource estimate and Technical Report, titled "Independent Technical Report; Wawa Gold Project, Ontario," and had an effective date of June 5, 2015. The 2015 Mineral Resource estimate is now historical as it has been superseded by the 2019 Technical Report which is based on material new data compiled by Red Pine since 2015. The QP has not completed sufficient work to consider the 2015 Mineral Resource estimate as current; and therefore, Red Pine is not treating this historical estimate as a current Mineral Resource and it should no longer be relied upon.

The 2015 Technical Report was completed in accordance with NI 43-101 and following the requirements of Form 43-101F1. The Mineral Resource estimates followed CIM Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines (November 2003) and were classified according to CIM Definition Standards for Mineral Resources & Mineral Reserves (May 2014).

The Mineral Resource estimates were derived using a geostatistical block modelling approach using Ordinary Kriging of the drill hole assay data available at the time of reporting. The Mineral Resource estimate stated Inferred Mineral Resource estimates for an open-pit mining scenario at a 0.4 g/t cut-off along with underground Mineral Resources below the open-pit envelope stated at a 2.5 g/t cut-off, as summarized in Table 6-24. For more information, the reader may refer to the 2015 Technical Report.

| Table 6-24: 2015 Mineral R | Resource | Estimate* |
|----------------------------|----------|-----------|
|----------------------------|----------|-----------|

| Resource<br>Category | Cut-off Gold<br>(g/t) | Quantity<br>(000s t) | Grade Gold<br>(g/t) | Contained<br>Metal Gold<br>(000s oz) |
|----------------------|-----------------------|----------------------|---------------------|--------------------------------------|
| Inferred**           |                       |                      |                     |                                      |
| Inside Pit           | 0.40                  | 10,239               | 2.05                | 676                                  |
| Outside Pit          | 0.40                  | 8,630                | 1.07                | 298                                  |
| Underground          | 2.50                  | 955                  | 3.73                | 114                                  |
| Total                | 0.50                  | 19,824               | 1.71                | 1,088                                |

Notes:

\* Mineral Resources are not Mineral Reserves and have not demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimate. Composites have been capped, where appropriate.

\*\* Pit Mineral Resources are reported at a cut-off grade of 0.40 g/t gold in relation with a conceptual pit shell constructed by SRK. Underground Mineral Resources include classified modelled blocks below the conceptual pit shell and above a cut-off grade of 2.50 g/t gold. Cut-off grades are based on a gold price of US\$1,250 per ounce and a gold recovery 95%.

# 7.0 GEOLOGICAL SETTING AND MINERALIZATION7.1 Regional Geology

The Project is in the southern part of the Michipicoten greenstone belt, one of two greenstone belts that form the Wawa Sub-province (Figure 7-1) of the Superior Province, the world's largest Archean craton (Ronacher et al., 2015). The Wawa Sub-province extends from Minnesota in the west to the Kapuskasing structural zone in the east. The Superior Province was formed by the amalgamation of numerous sub-provinces of various origins and compositions (plutonic, volcanic-plutonic, gneissic, sedimentary) that range in age from 3.0 billion years before present (Ga) to 2.65 Ga (Polat and Kerrich, 2000).



Figure 7-1: Regional Geology of the Michipicoten Greenstone Belt and Location of the Wawa Gold Project (Labelled in the Figure as "Wawa Gold Project")

#### 7.2 Local Geology

The Michipicoten greenstone belt is an amalgamation of three cycles of mafic to felsic volcanism associated with concomitant subvolcanic intrusions (Sage, 1994). Zircon U-Pb ages date volcanic Cycle 1 to 2.9 Ga, volcanic Cycle 2 to 2.75 Ga, and volcanic Cycle 3 to 2.7 Ga. Like other greenstone belts within the Superior Province, the mafic portion of the Michipicoten greenstone belt ranges in composition from basaltic to komatiitic. In the southern part of the Michipicoten greenstone belt, the main subvolcanic intrusions, respectively emplaced during cycles 1 and 2 are the Hawk Lake Granitic Complex and the Jubilee Lake Stock. These intrusions have been interpreted to delineate the centers of calderas and to be the intrusive equivalent of the felsic to intermediate volcanic rocks within the main greenstones (Sage, 1984). The hiatus between volcanic Cycles 2 and 3 was marked by extensive formation of Algoma-type banded iron formations.

Post-Archean magmatism includes diabase dykes and the emplacement of the Firesand River Carbonatite intruded along the Wawa-Hawk Lake-Manitowik Lake Fault System. The Project is located within the southern part of the Michipicoten greenstone belt (Sherman, 2005).

A prominent structure in the southern Michipicoten greenstone belt is the Wawa-Hawk Lake-Manitowik Lake Fault System, which defines the boundary between a lamprophyre-rich domain to the south and lamprophyre-free domain to the north (Figure 7-2). The emplacement of the Firesand River Carbonatite along the Wawa-Hawk Lake-Manitowik Lake Fault System at the intersection with the Firesand river fault suggests that the fault is deepseated, whereas the location of the Jubilee Stock and Hawk Granite Complex along the fault indicate that it may follow an older structure active during the formation of Michipicoten greenstone belt. All the rocks of the Michipicoten greenstone belt are metamorphosed at greenschist facies and its volcano-plutonic sequences have been repeatedly deformed and folded (Sage, 1994).

#### 7.3 Property Geology

The core of the known gold corridor of the Project is centered on the Jubilee Stock, a composite intrusion formed of porphyritic to phaneritic intrusive facies ranging from mafic to felsic in composition. Almost every historical mine on the property is located within or at the margins of the Jubilee Stock.



Figure 7-2: Geology Map of the Wawa Gold Project from Ronacher et al. (2015)

#### 7.3.1 Jubilee Stock

The Jubilee Stock is a high-level calc-alkaline intrusive complex of mafic to felsic composition and is formed by multiple individual intrusions (Frey, 1987; Sage, 1993; Figure 7-3). The centre of the Jubilee stock is characterized by more than 75% phaneritic intrusive facies forming a core zone with a 6 x 1.3 km surface expression, which is occurring as a curved-shaped sigmoid form with its long axis is oriented at 20°. The core of the Jubilee Stock is the only component of the intrusive complex currently subdivided and represented on the geology maps of the property. The intrusions in the core of the Jubilee Stock are medium- to coarse-grained and intermediate to felsic intrusions with a lesser component of mafic intrusions. The remaining 25% of the core zone is formed of undivided mafic to felsic porphyritic intrusions that are also surrounding the core zones of the Jubilee Stock. On the current geology map of the property, the porphyritic intrusions are not divided from their host volcanic rocks.

The age of emplacement of  $2,745 \pm 3$  Ma of the Jubilee Stock, is coeval within error to the age of the surrounding volcanic rocks of the second cycle (Sullivan et al. 1985). Sage (1993) interpreted the Jubilee Stock to have been formed in a shallow magma chamber underlying a caldera complex from which the volcanic units originated. The compositional and geometrical complexity of the Jubilee Stock comprising many contact zones between rocks of different rheology are interpreted to be critical controls on the geometry and distribution of the gold zones. The main intrusive facies of the Jubilee Stock encountered by Red Pine are described below.

#### 7.3.1.1 Medium-grained Intrusions of the Jubilee Stocks

Almost all the medium-grained to coarse-grained intrusions of the Jubilee Stock were described and classified by the historical operators of the Project as diorite without consideration for actual proportion in the intrusions of quartz, plagioclase, and alkali feldspar. To preserve the continuity with the nomenclature system used by historical operators, Red Pine kept the term diorite to describe and classify the phaneritic intrusive facies of the Jubilee Stock. The core of the Jubilee Sock includes of multiple intrusions of variable composition that ranges from mafic to felsic (Figure 7-3 and Figure 7-4). Reported petrographic work from Sage (1993) on the intrusions forming the core of the Jubilee Stock indicate a mode of 10-30% quartz, 40-55% plagioclase and 10-20% biotite without clear mention of alkali feldspar, which underlies a quartz dioritic to tonalitic composition for most of the individual intrusions forming the core of the Jubilee Stock. The mafic intrusions of the Jubilee Stock are forming magma mixing textures with the felsic to intermediate intrusions of the Jubilee Stock (Walker, 2011). Some of the mafic intrusions of the Jubilee Stock host zones of Ni-Cu mineralization that occur as disseminated clusters of pyrrhotite-chalcopyrite in which the pyrrhotite is likely intermingled with pentlandite. Some of the observed contacts between intrusions forming the core zone of the Jubilee Stock and other intrusive or volcanic rock are striking SE and dip moderately to shallowly to the SW.

For simplicity, the generic field classification of the intrusions forming the core of the Jubilee Stock as diorite is used in that report to refer to those intrusions.



Figure 7-3: Medium- to Coarse-Grained Facies of the Jubilee Stock Diorite near the Contact with the Volcanic Units Containing Enclaves of Volcanic Rocks



Figure 7-4: Typical Jubilee Stock Diorite in the Core of the Jubilee Stock

#### 7.3.1.2 Porphyritic Intrusions

Many porphyritic intrusions surrounding the core of Jubilee Stock and were hypothesized by Sage (1993) to occupy the ring fracture of a large caldera centred on the Jubilee Stock (Figure 7-5). In order of relative abundance, the main primary phenocryst assemblages observed in the porphyritic units are biotite-feldspar, biotite, feldspar, quartz-feldspar, and quartz. Based on multi-element analyses and targeted portable XRF measurements, four different classes of biotite-feldspar porphyritic intrusions are recognized in the Jubilee Stock, ranging in composition from mafic, mafic-intermediate, intermediate-felsic and felsic. A compositional continuum and visual gradation between medium- to coarse-grained diorite or tonalite with intermediate-felsic and felsic biotite-feldspar porphyritic intrusions were commonly observed, indicating the comagmatic nature of those units. Observations in drill core indicate that biotite porphyrites in which pervasive hydrothermal alteration preferentially replaced and destroyed the feldspar phenocrysts. Because of the variability in the mapping and logging of the porphyritic units, the porphyritic units of the Jubilee Stock remain undivided and not broken down into single intrusions at the time of this Report.



Figure 7-5: Feldspar-Quartz Porphyritic Intrusion Surface Exposure near the Surluga Deposit

#### 7.3.1.3 Silica-Sodic altered units (SILUNIT)

This unit corresponds to zones of strong silica-sodic alteration formed after phaneritic intrusions, volcanic units and porphyritic intrusions and prevails in certain zones of the Wawa Gold Corridor (Figure 7-6). The unit may relate to the hornfelsed units described by Sage (1993) as occurring along some of the contacts between the Jubilee Stock and the volcanic rocks. The observation of zones of intense silica-sodic alteration cross-cut by hydrothermal veins containing molybdenite interpreted as related to the formation of the Jubilee Stock suggests that silica-sodic alteration was formed in a period corresponding to the emplacement of the Jubilee Stock. In zones of intense alteration, the primary textures of the host rocks are generally destroyed, and the unit becomes visually homogeneous making protolith identification difficult. In the transitional zones, strong alteration fronts are seen to replace the host units. The predominant precursor unit are tonalites and felsic to intermediate-felsic porphyritic intrusions of the Jubilee Stock, and felsic to intermediate volcanic units.



## Figure 7-6: Silica-sodic Altered Unit Formed near the Contacts between the Jubilee Stock and the Volcanic Units

#### 7.3.1.4 Intrusive Breccias

Intrusive breccias occur in many zones of contact between the different intrusive facies forming the Jubilee Stock (Figure 7-7). The zones of intrusive breccias can be quite large and be observed in in drill core over core length exceeding 200 m. The ratio of matrix versus clasts varies considerably in the breccia zones, although there is a generally increase of the intrusive matrix proportions toward the centre of the intrusion injecting the older unit. The injecting intrusions forming the matrix of the intrusive breccias are typically the diorites and tonalites of the core zone of the Jubilee Stock, and also intrusions of felsic to intermediate-felsic biotite-felspar porphyritic units, whereas the fragments are typically mafic to mafic-intermediate biotite-feldspar porphyritic facies of the stock or the volcanic rocks (Figure 7-8). In chaotic breccia zones more than 3 distinct intrusive facies can be observed in the intrusive breccias.

The fragments vary considerably in size, ranging from a few millimetres to tens of metres and some are partially assimilated by the dioritic magma. As reported by Sage (1993) and noted by Red Pine geologists, the transitional and brecciated nature of the contacts between the intrusive facies of the Jubilee Stock and the changing and undulating geometry of those contact zones is making the mapping of contacts between discrete intrusive units



difficult. In the Jubilee Shear Zone, the intrusive units forming the breccias are completely transposed in the tectonic fabrics and the pre-existing zones of contacts can become preferential zones for gold mineralization.

Figure 7-7: Intrusive Breccia Formed at the Contact between the Jubilee Stock Medium- to Coarse-Grained Diorite and the Volcanic Units at the Sunrise #4 Gold Showing



Figure 7-8: Intrusive Breccia Texture in Drill Hole and Melanocratic Feldspar-Phyric Unit in the Contact Zone between the Jubilee Stock Coarse-Grained Diorite and the Volcanic Units

#### 7.3.2 Tholeiitic Intrusions

A distinct generation of mafic to ultramafic intrusions is documented on the Project based on their compositional attributes and their timing relation with the other intrusions of the Jubilee Stock. Compositionally, these mafic intrusions are transitional to tholeiitic and are coarse-grained in the centre of the larger intrusions (Figure 7-9) to fine-grained at the margins of the larger intrusions or for the smaller intrusions. (Figure 7-10). The intrusive complex related to the tholeiitic suite is centred on Reed Lake and forms the Reed Lake mafic-ultramafic complex, which is composed of diorite, quartz-gabbro, leuco- to meta-gabbro and pyroxenite.

Away from the Reed Lake Complex, the tholeiitic mafic intrusions occur as dykes that are cross-cutting most of the calc-alkaline intrusions of the Jubilee Stock. However, the observation of tholeiitic intrusions as fragments in intrusive breccias suggests that they are contemporaneous to the formation of the Jubilee Stock.

The dykes of that intrusive suite are principally striking SE and are shallowly to moderately dipping to the SW, parallel to some of the intrusive contacts observed in the core of the Jubilee Stock. The tholeiitic mafic intrusions are important structural controls on mineralization for (metallotects) the Project as they are commonly adjacent to the zones of higher-grade mineralization in the gold-bearing shear zones of the property. The presence of these intrusion is observed to widen the mineralized shear zones and they may also act as chemical traps to concentrate gold in more discrete sections of the mineralized structures. The largest dyke pertaining to that suite of intrusions are pictured on the geology map of the property.



Figure 7-9: Coarse-Grained Tholeiitic Gabbroic Intrusion in the Jubilee Stock



Figure 7-10: Fine-Grained Tholeiitic Gabbro in the Jubilee Stock

#### 7.3.3 Volcanic Units

For most of the Project, the descriptions of the volcanic units are constantly evolving depending on the opinion of the geologist, exploration model and time period. In many cases, the sub-volcanic porphyritic intrusions, part of the Jubilee Stock, and the volcanic units, are confused and their classification inter-changed. No systematic framework to classify and map the volcanic units of the property has so far been developed as exploration remained focused in the intrusive facies of the Jubilee Stock. In historical logs, many volcanic units are described as fragmental volcaniclastic units, but re-examination of some of those intervals during the course of the historical core sampling program indicate sheared porphyritic intrusions or zones of intrusive breccias. Some of the described fragmental volcanic units are also zones of fluid-assisted brecciation during brittle-ductile deformation in the shear zones of the property and are Au mineralized.

#### 7.3.3.1 Diabase and Lamprophyre Dykes

Swarms of lamprophyre, diabase, and carbonatite dykes are observed on the Project. The dykes are typically emplaced along pre-existing zones of weakness in large fracture or fault systems. The diabase dykes are magnetic, have chilled margins and a well-developed diabasic texture in their core which make them easily recognizable. The emplacement timing of the diabase dykes remains unconstrained, but they are observed to cross-cut the gold zones of the Project and are post-dating mineralization.

Lamprophyre dykes are pervasive throughout the Project and at least two generations of lamprophyre exist. One generation is late-stage and has cross-cut all the gold mineralized zones of the property. Dykes of that generation are black, porphyritic, medium-grained, and strongly magnetic with a blue amphibole alteration halo. Another set of lamprophyres is older and generally occurs as array of smaller dykes associated with alteration haloes
comprised in variable modal proportions of K-feldspar and siderite. A few carbonatite dykes are likely related to the Firesand Carbonatite located a few hundred metres east of the northeastern corner of the property are also observed in drill holes in the Surluga Deposit.

## 7.4 Structure and Gold Mineralization

Four periods of mineralization are documented in the Wawa Gold Corridor that include intrusion-related gold mineralization formed during the emplacement of the Jubilee Stock and three episodes of mineralization concurrent with an orogenic cycle during the periods of early and peak compression and post-orogenic extension. The Surluga Deposit forms the largest gold concentration currently defined on the Project and is hosted in a peak compression structure named the Jubilee Shear Zone that crosscuts the intrusive rocks of the Jubilee Stock.

#### 7.4.1 Intrusion-related gold mineralization

Intrusion-related gold mineralization has been observed and documented in the Jubilee Stock in certain diamond drill holes completed in the Wawa Gold Corridor and appears to intensify west of the Jubilee Shear Zone in the vicinities of the Jubilee Mine. Intrusion-related mineralization occurs as networks of biotite, biotite-quartz, chloritized biotite-quartz and quartz veins and replacement fronts that typically crosscut and overprint zones of silica-sodic replacement (Figure 7-11). Typical mineralization minerals include coarse- to medium-grained arsenopyrite, pyrite, pyrrhotite molybdenite, chalcopyrite and locally scheelite. In areas where chalcopyrite is an important sulphide in the paragenesis, silver is more abundant than in zones where chalcopyrite is absent. Large zones of gold mineralization associated with the intrusion-related system however remains to be discovered on the Wawa Gold Project.



Figure 7-11: Replacement-like Mineralization in the Jubilee Shear Zone Hanging Wall

## 7.4.2 Grace Deformation Period

Early compressive deformation is named the Grace Deformation Period and resulted in the formation of different sets of shear zones in the Jubilee Stock that can host zones of strong alteration and mineralization. The most documented and explored gold-bearing shear zone pertaining to the Grace Deformation Period is the Grace Shear Zone that id hosting the Grace zone of the Darwin-Grace Mine. The Grace Shear Zone is oriented NW to WNW and dips 55-75° to the NE to NNE with a stretching lineation trending around 135°/37°. Other sets of gold-mineralized shear zones that can be related to the Grace Deformation Period have an S to W-dip directions and are typically located along contacts between different intrusive units of the Jubilee.

Mineralized shear zones of potential significance from those sets include the Minto C Shear Zone and a network of mineralized shear zones intersected west of the Jubilee Mine and close to the Surluga Mine in the footwall of the Jubilee Shear Zone. The tectonic fabrics and hydrothermal alteration associated with Grace Deformation Period are constrained to the vicinity of the gold-bearing structures and are not penetrative outside the deformation zones. Some of the shear zones from the Grace Deformation Period, like the Grace Shear Zone and the Minto C Shear Zone, are known to contain high-grade gold mineralization, suggesting that the Grace Deformation Period represents an important event of primary gold mineralization in the Wawa Gold Corridor.

The main sulphide assemblages formed in the shear zones of the Grace Deformation Period typically include pyrite and pyrrhotite with variably abundant fine- to medium-grained and acicular arsenopyrite of different generations. The fine- to medium-grained and acicular arsenopyrite of the Grace Deformation Period texturally contrasts from the medium- to coarse-grained arsenopyrite of the intrusion-related mineralization event. The shear zones of the Grace Deformation Period and the mineralization zones hosted in those shear zones are variably affected by superimposed tectonic fabric and hydrothermal alteration related to peak compressive deformation and lamprophyre emplacement occurring in the post-compression stage. In areas where the structures of the Grace Deformation Period are extensively overprinted by deformation and hydrothermal fluids from the peak deformation period, arsenopyrite is locally preserved, but is typically moderately to completely destroyed and replaced by the sulphides characteristic of the peak deformation period like pyrite and pyrrhotite.

#### 7.4.3 Jubilee Deformation Period

Peak deformation is associated with a second period of gold mineralization and is called the Jubilee Deformation Period that is characterized by the formation of discrete shear zones striking 0-35° and dipping 30-55° to the E to ESE and a penetrative stretching lineation trending 160°-190° and plunging 20-35°. In the high strain domains of the shear zones forming during the Jubilee Deformation period, the stretching lineation typically prevails over the foliation to form L>>S to L tectonites (Figure 7-12). Deformation associated with peak-compressive deformation is penetrative in the Jubilee Stock and can be observed outside of the main shear zones associated with that deformation event.

The largest shear zones formed during the Jubilee Deformation Period and identified so far on the Project includes the Jubilee Shear Zone and the Hornblende Shear Zone. Centered on the Hornblende-Jubilee Shear Zone, those deformation zones, and all the satellite shear zones located between those two structures, are grouped into the Wawa Gold Corridor. In the Wawa Gold Corridor, the tectonic fabrics associated to the Jubilee Deformation Period extend laterally over a minimum surface width of 1 km where it forms many domains of L-tectonite in the intrusive units of the Jubilee Stock. Multiple generation of early to late deformation quartz veins that a variably transposed in the shear zone tectonic fabrics depending on the formation timing occur in mature zones of gold mineralization in the peak compression shear zones. Pyrite with variable pyrrhotite, variably abundant relicts of arsenopyrite and local and accessory to minor chalcopyrite, sphalerite and galena are the main sulphides in the gold mineralization zones.

A network of ENE-oriented and gold mineralized shear zones are also possibly associated with the Jubilee Deformation Event. This includes the Parkhill Shear Zone, hosting the Parkhill and Van Sickle mines and the Nyman Shear Zone associated with the Darwin area of the Darwin-Grace mine.



Figure 7-12: Characteristic Stretching Lineation of the Wawa Gold Corridor Preferentially Partitioned in a Mafic Dyke (William Gold Zone)

## 7.4.4 Minto Deformation Period

The deformation and mineralization period post-dating the Jubilee Deformation Period is named the Minto Deformation Period. It is associated with the formation of networks of gold mineralized shear zones and networks of extensional quartz veins. In the shear zones, gold mineralization occurs in discrete quartz and quartz-tourmaline veins with variable amounts of carbonate. The imprint of tectonic deformation related the Minto Deformation Period remains constrained to the boundaries of the shear zones formed during that even. A moderately to weakly developed stretching lineation, raking close to the dip direction of the structures, is developed in the shear zones but generally does not prevail over the tectonic foliation.

Tectonic deformation and shearing associated with the Minto Deformation Period resulted in three main types of structural expressions. The first type and second types of structures occur as networks of shear zones that are striking WNW to NW and dipping 45-55° to the NNE to NE and networks of shear zones strike NNE to NE and steeply dipping to the ESE to SE. These shear zones are typically formed along pre-existing discontinuities in the Jubilee Stock like intrusive contacts or pre-existing alteration zones that are located outside peak deformation shear zones. In the absence of pre-existing zones of rheological contrasts, the tectonic fabrics associated with those shear zones become typically becomes subtle and visually difficult to recognize. The most significant known shear zones that are oriented WNW to NW include the Minto Mine South Shear Zone hosting the Minto Mine South Deposit, the Parkhill #4 Shear Zone mined historically in the Parkhill mine in the 1930s and the Cooper Shear Zone mined locally in the 1930s in the Cooper Mine. The most significant NE structure is the Minto B Shear Zones.

The third structural expression of the Minto Deformation Period occurs in the shear zones of the Jubilee Deformation Period like the Jubilee Shear Zone where it resulted in the preferential reactivation of peak compression tectonic fabrics. This favored the emplacement of quartz-tourmaline veins that are, at a multi-meter scale, generally concordant with the tectonic fabrics and the overall envelope of peak compression shear zones. At a more local scale, the tectonic fabrics and vein contacts related to the Minto Deformation Period can be discordant, deform and crosscut partially peak compression tectonic fabrics.

Networks of extensional and gold mineralized quartz veins like the Sadowski, Minto, Mickelson-Sunrise and the Surluga North Vein systems were also formed and mineralized during the Minto Deformation Period.

Mineralization minerals in the gold mineralized quartz veins of the Minto Deformation Period typically include native gold, multiple generations of pyrite and pyrrhotite, chalcopyrite, bismuthinite and the local formation of native bismuth and gold-bismuth minerals, bismuth tellurides gold-bismuth sulphides.

The following sub-Item summarizes the main attributes of significant zones of gold mineralization tested in Red Pine's 2014 to 2022 exploration programs.

#### 7.4.5 Grace Shear Zone of the Grace Deformation Period

The Grace Shear Zone was mined in the upper levels of the Darwin-Grace Mine. It is formed after the porphyritic and phaneritic facies of the Jubilee Stock, has been traced over a strike length of 0.75 km, strikes approximately 327° and dips 60-75° degrees to the NW. In the mature area of the shear zones, its strongly deformed core has an average width, defined from surface exposure and diamond drilling of approximately 2 to 4 m. Outside the mature areas of the shear zone, the width of the high-strain core of the structure varies between 0.5 to 1.5 m. In the high-strain domain of the Grace Shear Zone, L>S to L>>S tectonites generally prevail over L<S to L<<S tectonites.

Mineralization in the Grace Shear Zone is characterized by quartz veining associated with arsenopyrite, pyrite and pyrrhotite, and variable native gold (Figure 7-12). The quartz veins and arsenopyrite are transposed and stretched in the Grace Shear Zone stretching lineation and are also variably transposed and stretched by tectonic fabrics characteristics of the Jubilee Shear Zone that are variably overprinting the tectonic fabrics of the Grace Shear Zone. Hydrothermal alteration related to gold mineralization in the Grace Shear Zone includes early albitization and biotite alteration progressively overprinted by a white mica-chlorite-iron carbonate assemblage related to the mineralized quartz veins.



Figure 7-13: Gold Mineralization in the Grace Deformation Zone Related to the Historical Darwin-Grace Mine

# 7.4.6 Wawa Gold Corridor – Jubilee Shear Zone (JSZ) of the Jubilee Deformation Period

The Jubilee shear zone is a large deformation zone which formed in the Wawa Gold Corridor into the intrusive units of the Jubilee Stock. Including its extension south of the Parkhill Fault, the Jubilee Shear Zone is now conclusively traced over a strike length of 5.5 km. The tectonic fabrics observed in the Jubilee Shear Zone predominantly relate to the Jubilee Deformation Period, but relicts of tectonic fabrics from the Grace Deformation Period and superimposed tectonic fabrics of the Minto Deformation Period are also observed in the structure. The Jubilee Shear Zone is made of alternating high-strain and low-strain domains forming a deformation zone ranging in width from 20 m to 120 m. Within the Jubilee Shear Zone, three continuous domains of stronger deformation where identified. The geometry of the domains of stronger deformation is strongly influenced by the compositional variability of the Jubilee Stock. In areas where the Jubilee Shear Zone is intercepting highly heterogeneous zones of the Jubilee Stock with multiple and closely spaced intrusive contacts, the domains of stronger deformation tend to widen, and the intensity of tectonic deformation increases. In areas where the Jubilee Stock is homogenous or the contacts between individual intrusions are widely spaced, the zones of stronger deformation tend to narrow and tectonic deformation decreases in intensity. The largest domain of stronger deformation is located at the center of the structure and host most of the mineralized zones of the Jubilee Shear Zone. The central domain of the Jubilee Shear Zone ranges in width between 2 m and 40 m. The upper and lower domains of stronger deformation in the Jubilee Shear Zone are not as consistently deformed and mineralized as the central domain and are on average not as thick. The lower and upper domains are more discrete in the northern extension of the Surluga Deposit than in its southern and central extension, where the upper and lower domain tends to coalesce more frequently with the central domain.

In the northern extension of the Surluga Deposit, the Jubilee Shear Zone strikes 0-15° and dips 25–55°. In the central zone of the Surluga Deposit, the Jubilee Shear Zone progressively bends to strike 0 35° in the southern extension of the Surluga Deposit (Figure 7-14).

Within the Jubilee Shear Zone, the stretching lineation characteristic of the Jubilee Deformation Period prevails over the tectonic foliation to form L>S to L>>S tectonites. Domains of L tectonite also exist in the structure and are not as favorable for gold mineralization as the domains of L>S and L>>S tectonite. The stretching lineation in the Jubilee Shear Zone typically rakes 150° in the plane of the foliation and the trend and plunge of the stretching lineation lineation vary with the rotation of the strike of the structure.



Note: Stripped outcrop of the Main domain of the Jubilee Shear Zone exposing the strong stretching lineation forming a L>S tectonite that is characteristic of the Jubilee Shear Zone. The stretching lineation is plunging toward the right of the picture.

#### Figure 7-14: Stripped Outcrop of the Main Domain of the Jubilee Shear Zone

Multiple generations of mineralized quartz veins are present in the Jubilee Shear Zone and can be divided in three discrete populations, veins early- to syn-Jubilee Deformation Period, veins syn- to late-Jubilee Deformation Period, veins of the Minto Deformation Period. Gold mineralization in the Surluga Deposit is principally associated with the veins of the early- to syn-Jubilee Deformation Period.

Early- to syn-Jubilee Deformation Period veins are composed of grey to pinkish white quartz and are forming arrays of quartz lenses stretched in the Jubilee Shear Zone stretching lineation that is defining its main direction of continuity for zones of higher-grade mineralization. The largest veins of that generation can be a few metres thick, and the smallest are a few mm wide and are forming eyes of quartz in the plane perpendicular to the stretching lineation. The veins are surrounded by stretched sericite-iron carbonate or sericite-chlorite-iron carbonate schists with variable sulphide content and assemblages of sulphides. The prevailing sulphide assemblage observed around the veins of the early- to syn-Jubilee Deformation Period is comprised of pyrite with occasional native gold and locally minor chalcopyrite, galena, and sphalerite (Figure 7-15 and Figure 7-16). A secondary sulphide assemblage observed around some of the early veins is comprised of arsenopyrite with accessory pyrite, local pyrrhotite and occasional native gold. The arsenopyrite-dominant assemblage of sulphides is variably overprinted

in the deposit by the pyrite-dominant assemblage of sulphides. Where arsenopyrite-rich assemblages prevail in the high-grade zones of the Surluga Deposit, relicts of tectonic foliations parallel to the Grace Shear Zone, and an alteration mineralogy comparable to what is observed in the Grace Shear Zone, can be observed. This is suggesting that early structures, potentially in the Grace Shear Zone orientation, may have contributed to the formation of high-grade mineralization in the Jubilee Shear Zone.

The syn- to late-Jubilee Deformation Period veins are localized and not abundant in the Jubilee Shear Zone. They cross-cut the stretched veins of the early- to syn-Jubilee Deformation Period and are themselves weakly to non-stretched in the Jubilee stretching lineation. There are characterized by a sulphide assemblage comprised of pyrite and pyrrhotite with possible chalcopyrite.

Quartz-tourmaline veins of the Minto Deformation Period are locally abundant in certain zones of the Jubilee Shear Zone (Figure 7-17). They are cross-cutting and folding the tectonites formed peak Jubilee Deformation and can be weakly to moderately transposed in the Jubilee foliation. They are composed of quartz with abundant tourmaline, accessory iron carbonate and a sulphide assemblage comprised of pyrite and pyrrhotite with accessory chalcopyrite and localized native gold. Large nuggets of native gold are also observed in these veins that are characterized by a strong nugget effect.



Figure 7-15: Grey Quartz Vein with Pyrite Representative of the Higher-Grade Zones of the Pyritic Gold Zones of the Surluga Deposit



Note: The core sample on top of the picture is showing the plane perpendicular to the stretching lineation.

Figure 7-16: Quartz Vein Stretched in the Stretching Lineation Characteristic of the Jubilee Shear Zone



Figure 7-17: Quartz-Tourmaline Veins of the Minto Deformation Period in the Surluga Deposit

#### 7.4.7 Wawa Gold Corridor – Hornblende Shear Zone of the Jubilee Deformation Period

The Hornblende Shear Zone is located west of the Jubilee Shear Zone. Near the main vertical shaft of the Surluga Mine, the Hornblende Shear Zone outcrops at an approximate horizontal distance of 350 m from the central domain of the Jubilee Shear Zone. The Hornblende Shear Zone was also developed underground over a strike length of 200 m at the seventh level of the Surluga Mine. To the North of the Surluga Mine shaft, historical and recent mapping of the property indicate that the Hornblende and Jubilee shear zones are progressively converging and near highway 101. A horizontal distance of approximately 175 m to 200 m separates the main splay of the Jubilee Shear Zone from the Hornblende Shear Zone. Along its 3.5 km of potential strike north of the Parkhill Fault, historical and Red Pine's surface mapping and diamond drilling confirmed the strike length of the Hornblende Shear Zone over 2.5 km to depths of up to 350 m below surface.

Similar to the Jubilee Shear Zone, the Hornblende Shear Zone is made of alternating high-strain and low-strain domains that are forming a deformation zone up to 100 m in thickness. However, not enough drilling and mapping data are available to precisely map the boundaries of the high-strain and low-strain domains forming the Hornblende Shear Zone. The high-strain domains of the Hornblende Shear Zone are characterized by the development of penetrative stretching lineations and tectonic foliations in which the lineations are typically stronger than the foliations. The width of the individual high-strain domains varies between 5 m and 15 m. The thickness of the high-strain domains of the Hornblende Shear Zone increased considerably where the structure cross-cut zones of the Jubilee Stock with multiple intrusive facies. The low strain domains are characterized by weakly penetrative tectonic fabrics. The main tectonic foliations and stretching lineations observed in the Hornblende Shear Zone parallel those observed in the Jubilee Shear Zone, indicating that the two structures are part of the same deformation system.

Similar to the Jubilee Shear Zone, gold mineralization is diversified in the Hornblende Shear Zone and occurred at different periods during the formation of the structure. The main mineralization zones occur as early to syn-peak Jubilee Deformation quartz veins of variable width that are transposed in the main tectonic foliation and stretched parallel to the stretching lineation. These veins are surrounded by haloes of white mica, chlorite, iron carbonate and silica alteration. The main sulphide assemblages are either arsenopyrite with accessory pyrite and pyrrhotite or pyrite with accessory pyrrhotite. Native gold is occasionally present in these zones of mineralization and is a typical indicator of high-grade gold. The main direction of continuity of these zones of mineralization is parallel to the stretching lineation.

In certain areas of the Hornblende Shear Zone, gold mineralization occurs as Minto-like quartz-tourmaline veins with variable pyrite-pyrrhotite-chalcopyrite. The early tectonic fabrics are folded in proximity to the quartz-tourmaline veins, indicating that, similar to the timing relation observed in the Jubilee Shear Zone, their emplacement post-dated peak-deformation in the Hornblende Shear Zone (Figure 7-18).



Figure 7-18: Hornblende Shear Zone Exposure

#### 7.4.8 Minto Mine Shear Zone (MMSZ) of the Minto Deformation Period

The Minto vein is hosted in the Minto Mine Shear Zone, which was the focus of mining in the Minto Mine (historically 23,100 oz @ 12.56 g/t). The Minto Mine Shear Zone is a 3 to 20 m wide Shear Zone hosting a domain of higher-grade mineralization centered on a quartz-tourmaline quartz vein. On the Project, the Minto Mine Shear Zone has been traced with sufficient confidence with diamond drilling and geological modelling over a strike length of 1.3 km and a down-dip distance of 730 m. To the north, the Minto Mine Shear Zone is cross-cut and offset by the Minto B Shear Zone. The Resource estimate presented in this technical report stops at the Minto B Shear Zone. The offset of the Minto Mine Shear Zone is visible by the progressive bending of the Minto Mine underground developments as the mine was getting closer to the Minto B Shear Zone. The Minto Mine Shear Zone over the nearby Surluga Deposit along the trace of a shear zone parallel to the Minto Mine Shear Zone. However, it cannot at the time of this report, be determined with a reasonable degree of confidence that the structure west of the Minto B Shear Zone is the actual extension of the Minto Mine Shear Zone. To the South, the Minto Mine Shear Zone has been traced by diamond drilling to the vicinities of the historical Parkhill Mine and remains open for further extension.

Outside of the zones of mineralization and strong veining, the tectonic foliation and lineations of the Minto Mine Shear Zone are poorly developed and not penetrative, making the structure sometimes hard to identify. Inside the zones of strong veining and mineralization, the structure has well-developed and penetrative tectonic foliation and lineations. Overall, the structural shear envelope of Minto Mine Zone is dipping approximately 48° to the NE and

the zones of higher-grade mineralization are raking approximately 60° to the right of an observer looking down the structure parallel to the dip direction. The domains of higher-grade mineralization in the Minto Mine Shear Zone are characterized by the presence of a domain, between 0.3 m to 5 m wide, where a single shear-hosted quartz vein or stacks of closely spaced shear hosted quartz veins are formed. The main domain of shear hosted veining initially exploited in the Minto Mine is quite continuous in the Minto Mine Shear Zone and was followed down-plunge over 600 m. Where a mature quartz domain is developed in the Minto Mine Shear Zone, a strongly sheared mafic unit is present either in the hanging wall or the footwall of the high-grade vein.

The gangue minerals of the mineralized quartz shears veins in the Minto Mine Shear Zone comprise light to dark grey quartz, tourmaline, and iron carbonate. Gold mineralization postdates the initial quartz stage and occurs in brittle fractures cross-cutting the early quartz. The earliest sulphides formed in the veins predates the main gold introduction period and includes subhedral to euhedral pyrite and pyrrhotite. During the main gold mineralization event, the early pyrite and pyrrhotite are overprinted by a new generation of anhedral pyrite and pyrrhotite associated with variable chalcopyrite, common native gold, and locally bismuthinite and gold-bismuth alloys (e.g., maldonite – Au2Bi). A generation of white quartz veining is cross-cutting the sulphides and early grey quartz. The observation of native gold in some zones of white quartz indicate either remobilization of gold from the main stage of mineralization or that the introduction of gold in the Minto Shear Zone postdates the emplacement of the white quartz veins. The strongly sheared mafic rocks around the domains of veining are overprinted by moderate to strong sericitic and iron carbonate replacement. Around the mature zones of the Minto Mine Shear Zone, a well-defined sericitic and carbonate alteration halo extends approximately 10 m to 20 m away from the vein. In the immature and poorly developed zones of the structures, white mica and carbonate alteration is confined to the weakly to moderately developed higher strain domains marking the presence of the structure.

The Minto Mine Shear Zone is one component of a network of parallel shear zones present on the Project. Another structure, mined in the historical Parkhill Mine and historically known as the #4 vein of the Parkhill Mine, is parallel to the Minto Mine Shear Zone (Figure 7-19). That structure was intersected by Red Pine diamond drilling and was observed at surface in historical trenches. That structure has been traced over a strike length 1.3 km. Tisley (1986) reports that from the historical records of the Parkhill Mine, the quartz veining, like the Minto Mine Shear zone, was continuous in the structure and that in the well-mineralized zones of the vein, the grade of the vein ranges between 8.57 g/t and 10.28 g/t gold.



Figure 7-19: Intersection of the Minto A Shear Zone, Related to the Minto Mine

#### 7.4.9 Cooper Shear Zone of the Minto Deformation Period

The Cooper Shear Zone, hosting the historical Cooper Mine, is located 1.2-km ENE of the northern end of the Surluga Deposit resource. Recent and historical work along the Cooper Shear Zone confirmed a strike length of at least 800 metres for the structure that remains open in both directions. The Cooper Shear Zone is striking WNW to NW and dips 45°. The stretching lineation in the Cooper Shear Zone rakes 150° and locally prevails over the foliation in the structure. The core zone of deformation of the Cooper Shear Zone varies in width from 2 m to 5 m in the mature zones of the structures can narrow to less than 1m in the less mature part of the structure. Like the Minto Mine South Shear Zone, the widest domains of the Cooper Shear Zone include a deformed mafic dyke.

Mineralization in the Cooper Shear Zone occurs as a quartz-tourmaline shear vein containing variable pyrite, pyrrhotite and chalcopyrite (Figure 7-20). Short-wave infrared data acquired on tourmaline in the quartz veins of the Cooper Shear Zone indicates that its tourmaline is compositionally similar to tourmaline in the Minto Mine Shear Zone. Chemically, the mineralized quartz domains in the Cooper Shear Zone contain elevated Bi, resulting in a chemical signature comparable to the mineralized quartz domains of the Minto Mine structure.



Figure 7-20: Cooper Shear Zone

#### 7.4.10 Minto B Shear Zone of the Minto Deformation Period

The Minto B Shear Zone overlain the Jubilee Shear Zone and has been traced so far over a strike length of 1 km. It is formed after the porphyritic and phaneritic facies of the Jubilee Stock. In zones where the Minto B Shear Zone overprints domains of the Jubilee Stock with more than one intrusive facies, the strongly deformed core of the shear zone has an average width of 10 m. Where the Minto B Shear Zone occurs in the domains of the Jubilee Stock formed of a single intrusive facies, the shear zone tends to splay in multiples high-strain domains averaging in width of 2 m to 3 m. Rheological weakening of intrusions of the Jubilee Stock because of pre-existing zones of hydrothermal alteration forming micas have also contributed to the formation of the Minto B Shear Zone. The Minto B Shear Zone is characterized by well-developed tectonic foliations striking at 035° and the shear zone envelope is steeply dipping at 80° to the ESE. In certain domains of the structure, the reversal of the dip direction of the foliation to a WNW orientation can occur. The stretching lineation in the Minto B Shear Zone is weakly to moderately developed and its trend/plunge is raking at a shallow angle to the dip direction. The Minto B Shear Zone slightly displaced the Minto Mine Shear Zone, indicating that the latest movement along the structures post-date the formation of the Minto Mine Shear Zone.

Gold mineralization in the Minto B Shear Zone related to the overprint of the Minto B tectonic fabrics on preexisting zones of gold mineralization and their transposition the Minto B Shear Zone. Gold mineralization variably occurs as zones of stronger silicification, quartz veining, iron carbonate alteration, and white mica alteration in intermediate/felsic intrusive facies, or chlorite in the mafic intrusive facies (Figure 7-21). The sulphide assemblages associated with gold mineralization vary considerably in the Minto B Shear Zone as it depends on the mineralization episode transposed in the Minto B Shear Zone. Typically, the main sulphide assemblage is comprised of pyrite with accessory pyrrhotite and minor chalcopyrite, but locally arsenopyrite prevails in the sulphide assemblages where earlier mineralization zones related to the Grace Deformation Episode are transposed in Minto B.



Figure 7-21: Zone of Higher-Grade Mineralization in the Minto B Shear Zone

#### 7.4.11 Late Brittle Faulting

The main brittle fault of the Project is the NW-oriented and sub-vertical Parkhill Fault. Following Sage (1993), the Parkhill Fault is the southeastern extension of the northwest-striking Black Trout Lake Fault. The age of the Parkhill Fault remains uncertain and its intrusions by gabbroic rocks, interpreted to be Archean, indicate that it is possibly a long-lived structure in the area, even possibly formed during the evolution of the gold system. The late movement along the Parkhill Fault, considering the interpreted offset of the Jubilee Shear Zone, is left-lateral.

## 7.5 Alteration

Carbonatization, white mica alteration, chloritization and silicification are characteristic alteration spatially overlapping or forming haloes around zones of gold mineralization. The width and intensity of white mica and quartz alteration in the shear zones generally correlates well with the intensity of deformation, the intensity of quartz veining and the intensity of gold mineralization (Figure 7-22). With increasing depth in the Jubilee Shear Zone, white mica and biotite alteration are beginning to alternatively prevail in association with zones of higher-grade gold mineralization in the structure. Pervasive biotite alteration of the intrusions of the Jubilee Stock also occurs away from the mineralized shear zones of the project. Epidote, tourmaline, and K-feldspar were also observed. Pink K-feldspar alteration variably overprints the white mica alteration. Outward from the mineralization, pre-mineralization sodic and silica-sodic alteration is prevalent. Many generations of biotite veins and a broad halo of chlorite-carbonate alteration also predate mineralization.



Figure 7-22: Sericitic Alteration Fronts Formed in the Shoulders of the Wawa Gold Shear Zone

## 8.0 **DEPOSIT TYPES**

Following Dube et al. (2015), gold mineralization on the Project is best classified as greenstone-hosted quartzcarbonate vein deposits that are part of Precambrian Lode Gold deposits. Precambrian Lode Gold Deposits are typically related to mesothermal mineralizing systems formed around the brittle-ductile transition in continental crust close to deep crustal, compressional, and trans-tensional fault zones with complex structural histories (Dubé and Gosselin, 2007). The deposits are typically located in secondary and tertiary structures adjacent to the boundaries between geological domains of a geological province and are typically formed during the late stages of orogeny (Goldfarb et al., 2005). The host greenstone belts are characterized by tholeiitic basalts and ultramafic komatiitic flows later intruded by intermediate to felsic porphyritic intrusions, and less often by swarms of albitite and lamprophyre dykes. Metamorphic fluids are interpreted to be responsible for gold transport as bi-sulphide complexes. However, gold may have been sequestered from rocks predating the metamorphic event and remobilized during a later event (Goldfarb et al., 2005) These epigenetic gold deposits in Precambrian shields have yielded 23,000 t Au to 25,000 t Au (Goldfarb et al., 2005).

Mineralization is hosted by veins filling shear zones and faults. Mineralization is concentrated at jogs or changes in strike along the larger-scale fault zones. The timing of the mineralization is typically syn to late deformation. Stockworks, breccias, crack-seal veins, sigmoidal veins, and disseminations in deeper parts are all common.

Typical hydrothermal alteration facies associated with this family of deposit, of which the mineralogy is strongly influenced by the composition of the host rock, include:

- Potassic alteration forming muscovite and fuchsite, or biotite and K-feldspar
- Sodic alteration characterized by the formation of albite as early alteration and dykes
- Carbonatization characterized by the zoned formation of carbonate and iron carbonate
- Sulphidization characterized by the formation of pyrite, arsenopyrite, and pyrrhotite
- Tourmalinization
- Chloritization

The typical sulphide content of these deposits is 2% to 5% with arsenopyrite and pyrite being the dominant sulphides. Pyrrhotite occurs in higher-temperature systems. Base metals are rare but W-, B-, and Te-bearing phases can occur (Goldfarb et al., 2005). Native gold and electrum are common in some deposits but absent in others. Typical gangue minerals are quartz and carbonate. Carbonates, muscovite, chlorite, K-feldspar, biotite, tourmaline, and albite are typical alteration minerals. Intermittent pressure changes in the shear zones and the resulting fluid un-mixing and water–rock interaction and associated de-sulphidation are considered the dominant precipitation mechanisms. Metamorphic fluids are interpreted to be responsible for gold transport. However, gold may have been sequestered from rocks predating the metamorphic event (Goldfarb et al., 2005).

Economically significant orogenic deposits tend to be between 2 km and 10 km long, ~1 km wide and can be mined to depths of 2 to 3 km. Examples of orogenic deposits/districts are Muruntau (Uzbekistan), Ashanti (West Africa) and Golden Mile (West Australia). Canadian examples include McIntyre–Hollinger (Ontario), Red Lake (Ontario) and Kirkland Lake (Ontario).

## 9.0 EXPLORATION

# 9.1 2014 to 2022 Rock Sampling

Red Pine completed surface sampling field programs from 2014 to 2022 and collected a total of 1,231 grab samples. Brad Leonard, P.Geo., a consultant to Red Pine completed the first rock sampling program during the fall of 2014; subsequent rock sampling programs were completed by Red Pine geologists.

Based on the field observations and sampling, gold mineralization producing gold grades over 0.1 g/t are typically restricted to shear zones, the immediate vicinity of the shear zones and zones of weak deformation and moderate-strong hydrothermal alteration. Gold grades over 5 g/t are restricted to mineralization zones rich in quartz veins (shear, tension, and networks of fine quartz stringers), and some shear and alteration zones with elevated arsenopyrite.

The purpose of the programs was to collect structural data and samples from the property showings and from areas identified as having potential for gold mineralization. The gold grades ranged from below detection to 143 g/t gold. A summary of the rock sampling programs is listed in Table 9-1. Highlights from the assay results for grab samples collected on the Project are listed in Table 9-2. Figure 9-1 shows the location of the rock samples and Figure 9-2 shows the location of the highlighted assay results.

| Parameters              | Year | Total |
|-------------------------|------|-------|
| Rock samples collected  | 2014 | 82    |
| Rock samples collected  | 2015 | 283   |
| Rock samples collected  | 2016 | 141   |
| Rock samples collected  | 2017 | 13    |
| Rock samples collected  | 2018 | 22    |
| Rock samples collected  | 2019 | 155   |
| Rock samples collected  | 2020 | 355   |
| Rock samples collected  | 2021 | 63    |
| Rock samples collected  | 2022 | 117   |
| Total number of samples |      | 1231  |

#### Table 9-1: Summary of Rock Samples Collected 2014 – 2022

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 22201  | Mariposa     | 2014 | 668794.7 | 5314282.1 | 11.000             |
| 22202  | Mariposa     | 2014 | 668804.8 | 5314279.7 | 0.241              |
| 22203  | Mariposa     | 2014 | 668810.3 | 5314254.5 | 0.010              |
| 22204  | Mariposa     | 2014 | 668843.3 | 5314224.7 | 0.163              |
| 22205  | DarwinGrace  | 2014 | 668029.4 | 5313445.5 | 13.500             |
| 22206  | DarwinGrace  | 2014 | 668029.4 | 5313445.5 | 0.005              |
| 22207  | DarwinGrace  | 2014 | 668470.3 | 5313570.6 | 0.068              |
| 22208  | Van Sickle   | 2014 | 668991.6 | 5314866.3 | 3.480              |
| 22209  | Van Sickle   | 2014 | 668991.6 | 5314866.3 | 0.005              |
| 22210  | Van Sickle   | 2014 | 668991.6 | 5314866.3 | 0.007              |
| 22211  | Van Sickle   | 2014 | 668991.6 | 5314866.3 | 0.005              |
| 22212  | Van Sickle   | 2014 | 668991.6 | 5314866.3 | 0.005              |
| 22213  | Mariposa     | 2014 | 668781.1 | 5314180.4 | 0.137              |
| 22214  | Mariposa     | 2014 | 668781.1 | 5314180.4 | 0.364              |
| 22215  | Mariposa     | 2014 | 668781.1 | 5314180.4 | 0.016              |
| 22306  | Surluga      | 2014 | 668230.3 | 5317910.5 | 0.019              |
| 22307  | Surluga      | 2014 | 668251.3 | 5317927.7 | 0.009              |
| 22308  | Surluga      | 2014 | 668251.3 | 5317927.7 | 0.007              |
| 22309  | Cooper       | 2014 | 669592.2 | 5319119.3 | 0.028              |
| 22310  | Cooper       | 2014 | 669592.2 | 5319119.3 | 0.005              |
| 22311  | Cooper       | 2014 | 669587.9 | 5319122.8 | 0.020              |
| 22312  | Cooper       | 2014 | 669587.9 | 5319122.8 | 0.077              |
| 22313  | Mackay Point | 2014 | 668762.9 | 5318440.6 | 5.630              |
| 22314  | Mackay Point | 2014 | 668791.6 | 5318470.5 | 14.700             |
| 22315  | Surluga      | 2014 | 667960.4 | 5316853.2 | 0.005              |
| 22316  | Jubilee      | 2014 | 667930.7 | 5316219.6 | 2.300              |
| 22317  | Jubilee      | 2014 | 667930.7 | 5316219.6 | 0.018              |
| 22318  | Jubilee      | 2014 | 667930.7 | 5316219.6 | 0.177              |
| 22319  | Jubilee      | 2014 | 667930.7 | 5316219.6 | 0.112              |
| 22320  | Surluga      | 2014 | 668311.0 | 5316955.3 | 0.005              |
| 22321  | Jubilee      | 2014 | 668002.7 | 5316478.9 | 0.022              |
| 22322  | Jubilee      | 2014 | 667997.1 | 5316477.5 | 0.037              |
| 22323  | Jubilee      | 2014 | 667997.1 | 5316477.5 | 0.005              |
| 22324  | Jubilee      | 2014 | 667997.1 | 5316477.5 | 0.016              |
| 22325  | Jubilee      | 2014 | 667973.1 | 5316472.7 | 0.005              |
| 22326  | Minto        | 2014 | 668161.9 | 5315781.0 | 0.638              |
| 22327  | Minto        | 2014 | 668190.7 | 5315788.9 | 17.000             |

| Sample | Area        | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-------------|------|----------|-----------|--------------------|
| 22328  | Minto       | 2014 | 668190.7 | 5315788.9 | 5.510              |
| 22329  | Minto       | 2014 | 668165.9 | 5315787.1 | 0.012              |
| 22330  | Minto       | 2014 | 668141.4 | 5315833.9 | 0.062              |
| 22331  | Minto       | 2014 | 667976.1 | 5315863.9 | 0.011              |
| 22332  | Minto       | 2014 | 667976.1 | 5315863.9 | 0.014              |
| 22333  | Minto       | 2014 | 667976.1 | 5315863.9 | 0.005              |
| 22334  | Sunrise     | 2014 | 668942.5 | 5315760.7 | 9.250              |
| 22335  | Sunrise     | 2014 | 668942.5 | 5315760.7 | 0.008              |
| 22336  | Sunrise     | 2014 | 668942.1 | 5315753.7 | 31.900             |
| 22337  | Sunrise     | 2014 | 668942.1 | 5315753.7 | 0.010              |
| 22338  | Sunrise     | 2014 | 668932.3 | 5315689.2 | 27.000             |
| 22339  | Sunrise     | 2014 | 668926.4 | 5315679.4 | 0.015              |
| 22340  | Sunrise     | 2014 | 668724.4 | 5315744.7 | 15.000             |
| 22341  | Sunrise     | 2014 | 668724.4 | 5315744.7 | 0.013              |
| 22342  | Sunrise     | 2014 | 668724.4 | 5315744.7 | 0.005              |
| 22343  | Sunrise     | 2014 | 668718.1 | 5315826.1 | 0.238              |
| 22344  | Sunrise     | 2014 | 668702.9 | 5315821.9 | 0.016              |
| 22345  | Sunrise     | 2014 | 668687.5 | 5315821.5 | 0.971              |
| 22346  | Sunrise     | 2014 | 668712.6 | 5315808.9 | 0.009              |
| 22347  | Parkhill    | 2014 | 668555.8 | 5314701.4 | 0.025              |
| 22348  | Parkhill    | 2014 | 668555.8 | 5314701.4 | 0.025              |
| 22349  | Parkhill    | 2014 | 668555.8 | 5314701.4 | 0.005              |
| 22350  | Parkhill    | 2014 | 668544.1 | 5314669.5 | 0.280              |
| 33901  | Surluga     | 2014 | 668436.0 | 5316800.0 | 0.005              |
| 33902  | Surluga     | 2014 | 668436.0 | 5316800.0 | 0.005              |
| 33903  | Surluga     | 2014 | 668436.0 | 5316800.0 | 0.005              |
| 33904  | Surluga     | 2014 | 668436.0 | 5316800.0 | 0.005              |
| 33905  | Surluga     | 2014 | 668402.0 | 5316621.0 | 0.005              |
| 33906  | Surluga     | 2014 | 668254.0 | 5317193.0 | 0.007              |
| 33907  | Surluga     | 2014 | 668300.0 | 5316854.0 | 0.005              |
| 33908  | Jubilee     | 2014 | 668348.0 | 5316420.0 | 0.005              |
| 33909  | Jubilee     | 2014 | 668348.0 | 5316420.0 | 0.007              |
| 33910  | Jubilee     | 2014 | 668000.0 | 5316145.0 | 0.005              |
| 33911  | Surluga     | 2014 | 668228.0 | 5316912.0 | 0.017              |
| 33912  | DarwinGrace | 2014 | 667019.0 | 5312868.0 | 0.005              |
| 33913  | Surluga     | 2014 | 668235.0 | 5316659.0 | 0.015              |
| 33914  | Blackington | 2014 | 668995.9 | 5314102.0 | 0.005              |
| 33915  | Blackington | 2014 | 668987.6 | 5314081.8 | 0.008              |

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 33916  | Blackington  | 2014 | 669017.7 | 5314061.2 | 0.077              |
| 33917  | Blackington  | 2014 | 669038.2 | 5314086.0 | 0.010              |
| 33918  | Blackington  | 2014 | 668969.5 | 5314060.6 | 0.005              |
| 33919  | Blackington  | 2014 | 668889.0 | 5314086.9 | 0.005              |
| 33920  | Blackington  | 2014 | 668889.0 | 5314086.9 | 0.010              |
| 33921  | DarwinGrace  | 2014 | 668275.3 | 5313490.4 | 0.005              |
| 223361 | Sunrise      | 2014 | 668942.1 | 5315753.7 | 0.036              |
| 11456  | Sunrise      | 2015 | 668601.0 | 5315750.0 | 0.005              |
| 11457  | Sunrise      | 2015 | 668601.0 | 5315750.0 | 0.005              |
| 11458  | Sunrise      | 2015 | 668670.0 | 5315792.0 | 0.006              |
| 11459  | Sunrise      | 2015 | 668722.0 | 5315761.0 | 0.005              |
| 11460  | Sunrise      | 2015 | 668767.0 | 5315709.0 | 0.005              |
| 11461  | Sunrise      | 2015 | 668812.0 | 5315733.0 | 0.005              |
| 11462  | Sunrise      | 2015 | 668832.0 | 5315787.0 | 0.005              |
| 11463  | Sunrise      | 2015 | 668900.0 | 5315809.0 | 0.005              |
| 11464  | Sunrise      | 2015 | 668914.0 | 5315818.0 | 0.016              |
| 11465  | Sunrise      | 2015 | 668966.0 | 5315680.0 | 24.900             |
| 11501  | Surluga      | 2015 | 668260.0 | 5317931.0 | 0.014              |
| 11502  | Surluga      | 2015 | 668260.0 | 5317931.0 | 0.012              |
| 11503  | Surluga      | 2015 | 668222.0 | 5317904.0 | 0.005              |
| 11504  | Surluga      | 2015 | 668222.0 | 5317904.0 | 0.005              |
| 11505  | Surluga      | 2015 | 668179.0 | 5317884.0 | 0.005              |
| 11506  | Surluga      | 2015 | 668179.0 | 5317884.0 | 0.007              |
| 11507  | Surluga      | 2015 | 668088.0 | 5317842.0 | 0.005              |
| 11508  | Surluga      | 2015 | 668088.0 | 5317842.0 | 0.005              |
| 11509  | Surluga      | 2015 | 668230.0 | 5317907.0 | 0.005              |
| 11510  | Surluga      | 2015 | 668230.0 | 5317907.0 | 0.005              |
| 11511  | Mackay Point | 2015 | 668317.0 | 5318147.0 | 0.005              |
| 11522  | Mackay Point | 2015 | 668769.0 | 5318466.0 | 0.129              |
| 11523  | Mackay Point | 2015 | 668769.0 | 5318466.0 | 0.734              |
| 11527  | Mackay Point | 2015 | 668761.0 | 5318448.0 | 0.592              |
| 11528  | Mackay Point | 2015 | 668761.0 | 5318448.0 | 0.142              |
| 11529  | Mackay Point | 2015 | 668761.0 | 5318448.0 | 0.108              |
| 11530  | Mackay Point | 2015 | 668766.0 | 5318449.0 | 2.400              |
| 11532  | Mackay Point | 2015 | 668755.6 | 5318441.9 | 16.600             |
| 11533  | Mackay Point | 2015 | 668755.6 | 5318441.9 | 0.441              |
| 11534  | Mackay Point | 2015 | 668640.0 | 5318226.0 | 1.360              |
| 11535  | Mackay Point | 2015 | 668640.0 | 5318226.0 | 0.105              |

| Sample | Area       | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|------------|------|----------|-----------|--------------------|
| 11541  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.053              |
| 11542  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.131              |
| 11543  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.409              |
| 11544  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.285              |
| 11545  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.013              |
| 11546  | Minto      | 2015 | 668176.0 | 5315788.0 | 0.009              |
| 11585  | Minto      | 2015 | 668226.0 | 5315962.0 | 0.007              |
| 11586  | Minto      | 2015 | 668226.0 | 5315962.0 | 0.006              |
| 11587  | Minto      | 2015 | 668226.0 | 5315962.0 | 0.012              |
| 11588  | Minto      | 2015 | 668226.0 | 5315962.0 | 0.041              |
| 11591  | Minto      | 2015 | 668223.0 | 5315964.0 | 0.014              |
| 11592  | Minto      | 2015 | 668221.0 | 5315962.0 | 0.012              |
| 11593  | Minto      | 2015 | 668221.0 | 5315962.0 | 0.050              |
| 11594  | Minto      | 2015 | 668228.0 | 5315936.0 | 0.143              |
| 11595  | Minto      | 2015 | 668246.0 | 5315995.0 | 0.182              |
| 11596  | Minto      | 2015 | 668463.0 | 5315777.0 | 0.010              |
| 11597  | Minto      | 2015 | 668463.0 | 5315777.0 | 10.500             |
| 11615  | Van Sickle | 2015 | 668937.0 | 5314835.0 | 0.007              |
| 11616  | Van Sickle | 2015 | 668937.0 | 5314835.0 | 0.494              |
| 11617  | Van Sickle | 2015 | 668937.0 | 5314835.0 | 0.012              |
| 11618  | Van Sickle | 2015 | 668958.0 | 5314842.0 | 2.710              |
| 11619  | Parkhill   | 2015 | 668764.0 | 5314700.0 | 54.100             |
| 11620  | Van Sickle | 2015 | 668958.0 | 5314842.0 | 0.009              |
| 11626  | Parkhill   | 2015 | 668746.0 | 5314695.0 | 12.900             |
| 11627  | Parkhill   | 2015 | 668773.0 | 5314711.0 | 0.005              |
| 11632  | Sunrise    | 2015 | 668912.6 | 5315689.1 | 0.123              |
| 11633  | Sunrise    | 2015 | 668909.8 | 5315688.6 | 0.622              |
| 11634  | Sunrise    | 2015 | 668909.1 | 5315687.4 | 0.153              |
| 11635  | Sunrise    | 2015 | 668905.4 | 5315687.2 | 0.005              |
| 11643  | Sunrise    | 2015 | 668907.1 | 5315694.7 | 0.009              |
| 11644  | Sunrise    | 2015 | 668907.0 | 5315695.1 | 3.390              |
| 11645  | Sunrise    | 2015 | 668906.8 | 5315695.5 | 0.071              |
| 11652  | Surluga    | 2015 | 668102.0 | 5317831.0 | 0.025              |
| 11653  | Surluga    | 2015 | 668102.0 | 5317831.0 | 0.256              |
| 11654  | Surluga    | 2015 | 668102.0 | 5317831.0 | 0.013              |
| 11655  | Surluga    | 2015 | 668115.0 | 5317779.0 | 0.005              |
| 11656  | Surluga    | 2015 | 668115.0 | 5317779.0 | 0.018              |
| 11657  | Surluga    | 2015 | 668128.0 | 5317727.0 | 0.005              |

| Sample | Area    | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|---------|------|----------|-----------|--------------------|
| 11658  | Surluga | 2015 | 668135.0 | 5317735.0 | 0.005              |
| 11659  | Surluga | 2015 | 668163.0 | 5317760.0 | 0.006              |
| 11660  | Surluga | 2015 | 668120.0 | 5317686.0 | 0.005              |
| 11661  | Surluga | 2015 | 668109.0 | 5317639.0 | 0.014              |
| 11662  | Surluga | 2015 | 668042.0 | 5317449.0 | 0.852              |
| 11663  | Surluga | 2015 | 668077.0 | 5317498.0 | 24.400             |
| 11664  | Surluga | 2015 | 668065.0 | 5317535.0 | 0.010              |
| 11665  | Surluga | 2015 | 667745.0 | 5316900.0 | 0.018              |
| 11666  | Surluga | 2015 | 667658.0 | 5317001.0 | 0.043              |
| 11667  | Surluga | 2015 | 667734.0 | 5316845.0 | 0.022              |
| 11668  | Surluga | 2015 | 667746.0 | 5316826.0 | 0.007              |
| 11669  | Jubilee | 2015 | 667722.0 | 5316226.0 | 0.005              |
| 11670  | Minto   | 2015 | 667653.0 | 5315325.0 | 0.006              |
| 11671  | Minto   | 2015 | 667584.0 | 5315344.0 | 0.005              |
| 11672  | Minto   | 2015 | 667638.0 | 5315387.0 | 0.005              |
| 11673  | Minto   | 2015 | 667701.0 | 5315473.0 | 0.005              |
| 11674  | Minto   | 2015 | 667650.0 | 5315448.0 | 0.005              |
| 11675  | Minto   | 2015 | 667650.0 | 5315448.0 | 0.005              |
| 11676  | Minto   | 2015 | 667576.0 | 5315505.0 | 0.005              |
| 11677  | Minto   | 2015 | 667576.0 | 5315505.0 | 0.005              |
| 11678  | Minto   | 2015 | 667464.0 | 5315489.0 | 0.005              |
| 11679  | Minto   | 2015 | 667518.0 | 5315656.0 | 0.007              |
| 11680  | Minto   | 2015 | 667518.0 | 5315656.0 | 0.005              |
| 11681  | Minto   | 2015 | 667518.0 | 5315653.0 | 0.017              |
| 11682  | Minto   | 2015 | 667527.0 | 5315668.0 | 0.165              |
| 11683  | Minto   | 2015 | 667385.0 | 5315528.0 | 0.009              |
| 11684  | Minto   | 2015 | 667329.0 | 5315388.0 | 0.005              |
| 11685  | Minto   | 2015 | 668133.0 | 5315109.0 | 0.005              |
| 11686  | Minto   | 2015 | 668074.0 | 5315113.0 | 0.096              |
| 11687  | Minto   | 2015 | 667930.0 | 5314879.0 | 0.005              |
| 11688  | Minto   | 2015 | 667889.0 | 5314873.0 | 0.005              |
| 11689  | Minto   | 2015 | 667864.0 | 5314890.0 | 0.005              |
| 11690  | Minto   | 2015 | 667864.0 | 5314890.0 | 0.005              |
| 11691  | Minto   | 2015 | 667869.0 | 5314921.0 | 0.005              |
| 11692  | Minto   | 2015 | 667550.0 | 5315045.0 | 0.385              |
| 11693  | Minto   | 2015 | 667527.0 | 5314962.0 | 0.297              |
| 11694  | Minto   | 2015 | 667540.0 | 5314976.0 | 0.005              |
| 11695  | Minto   | 2015 | 667489.0 | 5314915.0 | 0.005              |

| Sample | Area    | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|---------|------|----------|-----------|--------------------|
| 11696  | Minto   | 2015 | 667489.0 | 5314915.0 | 0.005              |
| 11697  | Minto   | 2015 | 667527.0 | 5315026.0 | 0.005              |
| 11698  | Minto   | 2015 | 667501.0 | 5315048.0 | 0.008              |
| 11699  | Minto   | 2015 | 667241.0 | 5315514.0 | 0.005              |
| 11700  | Minto   | 2015 | 667158.0 | 5315472.0 | 0.060              |
| 11701  | Sunrise | 2015 | 668944.0 | 5315749.0 | 36.300             |
| 11702  | Sunrise | 2015 | 668790.0 | 5315707.0 | 0.038              |
| 11703  | Sunrise | 2015 | 668790.0 | 5315707.0 | 6.860              |
| 11704  | Sunrise | 2015 | 668767.0 | 5315707.0 | 0.005              |
| 11705  | Sunrise | 2015 | 668751.0 | 5315714.0 | 0.033              |
| 11706  | Sunrise | 2015 | 668682.0 | 5315732.0 | 0.005              |
| 11707  | Sunrise | 2015 | 668663.0 | 5315718.0 | 0.005              |
| 11708  | Sunrise | 2015 | 668663.0 | 5315718.0 | 0.005              |
| 11709  | Sunrise | 2015 | 668653.0 | 5315730.0 | 0.062              |
| 11710  | Sunrise | 2015 | 668653.0 | 5315730.0 | 0.005              |
| 11711  | Sunrise | 2015 | 668574.0 | 5315679.0 | 0.005              |
| 11712  | Sunrise | 2015 | 668690.0 | 5315823.0 | 1.800              |
| 11713  | Sunrise | 2015 | 668791.0 | 5315836.0 | 0.026              |
| 11714  | Sunrise | 2015 | 668791.0 | 5315831.0 | 0.038              |
| 11715  | Sunrise | 2015 | 668833.0 | 5315820.0 | 0.013              |
| 11716  | Sunrise | 2015 | 668870.0 | 5315823.0 | 0.023              |
| 11717  | Sunrise | 2015 | 669367.0 | 5315805.0 | 0.005              |
| 11718  | Sunrise | 2015 | 669367.0 | 5315805.0 | 0.005              |
| 11719  | Sunrise | 2015 | 669428.0 | 5315788.0 | 0.005              |
| 11720  | Sunrise | 2015 | 669460.0 | 5315811.0 | 0.005              |
| 11721  | Sunrise | 2015 | 669354.0 | 5315932.0 | 0.005              |
| 11722  | Sunrise | 2015 | 669199.0 | 5315668.0 | 0.159              |
| 11723  | Sunrise | 2015 | 668776.0 | 5315828.0 | 0.037              |
| 11724  | Sunrise | 2015 | 668723.0 | 5315749.0 | 0.041              |
| 11725  | Sunrise | 2015 | 668723.0 | 5315749.0 | 6.900              |
| 11726  | Sunrise | 2015 | 668858.0 | 5315696.0 | 0.005              |
| 11727  | Sunrise | 2015 | 668858.0 | 5315696.0 | 0.077              |
| 11728  | Sunrise | 2015 | 668884.0 | 5315692.0 | 93.000             |
| 11729  | Surluga | 2015 | 667755.0 | 5316781.0 | 0.005              |
| 11730  | Surluga | 2015 | 667755.0 | 5316781.0 | 0.371              |
| 11731  | Surluga | 2015 | 667776.0 | 5316765.0 | 0.005              |
| 11732  | Surluga | 2015 | 667784.0 | 5316768.0 | 0.075              |
| 11733  | Surluga | 2015 | 667836.0 | 5316774.0 | 0.005              |

| Sample  | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|--------------|------|----------|-----------|--------------------|
| 11734   | Surluga      | 2015 | 667836.0 | 5316774.0 | 0.005              |
| 11735   | Surluga      | 2015 | 667874.0 | 5316765.0 | 0.005              |
| 11736   | Surluga      | 2015 | 667703.0 | 5316720.0 | 0.008              |
| 11737   | Surluga      | 2015 | 667703.0 | 5316720.0 | 0.021              |
| 11738   | Minto        | 2015 | 667543.0 | 5315921.0 | 0.010              |
| 11739   | Minto        | 2015 | 667543.0 | 5315921.0 | 0.005              |
| 11740   | Minto        | 2015 | 667248.0 | 5315851.0 | 0.005              |
| 11741   | Minto        | 2015 | 667253.0 | 5315841.0 | 0.005              |
| 11742   | DarwinGrace  | 2015 | 668025.0 | 5313447.0 | 1.270              |
| 11743   | DarwinGrace  | 2015 | 668025.0 | 5313447.0 | 18.400             |
| 11744   | DarwinGrace  | 2015 | 667962.0 | 5313532.0 | 0.006              |
| 11745   | DarwinGrace  | 2015 | 667982.0 | 5313544.0 | 0.016              |
| 11746   | DarwinGrace  | 2015 | 668042.0 | 5313597.0 | 0.005              |
| 11747   | DarwinGrace  | 2015 | 667936.0 | 5313545.0 | 0.021              |
| 11748   | DarwinGrace  | 2015 | 667936.0 | 5313545.0 | 0.005              |
| 11749   | DarwinGrace  | 2015 | 668197.0 | 5313285.0 | 0.054              |
| 11750   | DarwinGrace  | 2015 | 667946.0 | 5313522.0 | 0.006              |
| 11751   | DarwinGrace  | 2015 | 668104.0 | 5313613.0 | 0.005              |
| 11752   | DarwinGrace  | 2015 | 668167.0 | 5313464.0 | 0.005              |
| 11753   | DarwinGrace  | 2015 | 668167.0 | 5313464.0 | 0.005              |
| 11754   | DarwinGrace  | 2015 | 668278.0 | 5313485.0 | 0.057              |
| 33857   | Jubilee      | 2015 | 668247.0 | 5316175.0 | 0.007              |
| 33951   | Surluga      | 2015 | 668041.0 | 5317375.0 | 0.005              |
| 33952   | Surluga      | 2015 | 668080.0 | 5317399.0 | 0.005              |
| 33953   | Surluga      | 2015 | 668124.0 | 5317402.0 | 0.046              |
| 33954   | Surluga      | 2015 | 667648.0 | 5316793.0 | 0.023              |
| 33955   | Surluga      | 2015 | 667506.0 | 5316691.0 | 0.007              |
| 33956   | Jubilee West | 2015 | 666051.0 | 5316717.0 | 0.005              |
| 33957   | Jubilee West | 2015 | 666084.0 | 5316745.0 | 0.005              |
| 33958   | Jubilee West | 2015 | 666084.0 | 5316745.0 | 0.005              |
| 983851  | Jubilee West | 2015 | 666671.0 | 5316903.0 | 0.020              |
| 983852  | Jubilee West | 2015 | 666785.0 | 5316940.0 | 0.006              |
| 983853  | Jubilee West | 2015 | 666971.0 | 5316467.0 | 0.011              |
| 983854  | Jubilee West | 2015 | 666434.0 | 5315955.0 | 0.007              |
| 983855  | Cooper       | 2015 | 670155.0 | 5316510.0 | 0.006              |
| 983856  | Sunrise      | 2015 | 669374.0 | 5315809.0 | 0.005              |
| 983857  | Sunrise      | 2015 | 669374.0 | 5315809.0 | 0.008              |
| 1099301 | Jubilee West | 2015 | 666142.0 | 5316768.0 | 1.150              |

| Sample  | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|--------------|------|----------|-----------|--------------------|
| 1099302 | Jubilee West | 2015 | 665814.0 | 5316329.0 | 0.005              |
| 1099303 | Jubilee West | 2015 | 665825.0 | 5316333.0 | 0.005              |
| 1099304 | Jubilee West | 2015 | 665795.0 | 5316422.0 | 0.005              |
| 1099305 | Jubilee West | 2015 | 666140.0 | 5316758.0 | 0.006              |
| 1099306 | Jubilee West | 2015 | 666157.0 | 5316771.0 | 0.096              |
| 1099307 | Jubilee West | 2015 | 666182.0 | 5316721.0 | 1.780              |
| 1099308 | Minto        | 2015 | 668398.8 | 5315384.0 | 0.005              |
| 1099309 | Minto        | 2015 | 667938.4 | 5315188.7 | 0.199              |
| 1099310 | Minto        | 2015 | 668285.4 | 5316042.7 | 0.026              |
| 1099311 | Mackay Point | 2015 | 668760.7 | 5318447.1 | 0.055              |
| 1099312 | Mackay Point | 2015 | 668555.6 | 5318182.6 | 0.006              |
| 1099313 | Minto        | 2015 | 668190.9 | 5315785.4 | 0.005              |
| 1099314 | Surluga      | 2015 | 668222.0 | 5317904.0 | 0.073              |
| 1099315 | Surluga      | 2015 | 668260.0 | 5317931.0 | 0.005              |
| 1099316 | Minto        | 2015 | 668288.0 | 5315826.5 | 0.215              |
| 1099317 | Minto        | 2015 | 668288.0 | 5315826.5 | 0.037              |
| 1099318 | Minto        | 2015 | 668179.4 | 5315892.4 | 0.005              |
| 1099319 | Minto        | 2015 | 668447.0 | 5315382.0 | 1.670              |
| 1099320 | Minto        | 2015 | 668398.8 | 5315384.0 | 0.271              |
| 1099321 | Minto        | 2015 | 668398.8 | 5315384.0 | 0.005              |
| 1099322 | Minto        | 2015 | 668398.8 | 5315384.0 | 0.005              |
| 1099323 | Minto        | 2015 | 668398.8 | 5315384.0 | 3.680              |
| 1099324 | Minto        | 2015 | 668503.0 | 5315441.2 | 0.005              |
| 1099325 | Van Sickle   | 2015 | 669050.6 | 5314890.0 | 0.010              |
| 1473001 | Mariposa     | 2015 | 668770.9 | 5314283.9 | 1.160              |
| 1473002 | Mariposa     | 2015 | 668782.0 | 5314282.2 | 0.013              |
| 1473003 | Mariposa     | 2015 | 668785.0 | 5314282.2 | 1.820              |
| 1473004 | Mariposa     | 2015 | 668791.1 | 5314280.8 | 0.022              |
| 1473005 | Mariposa     | 2015 | 668795.4 | 5314280.6 | 0.008              |
| 1473006 | Mariposa     | 2015 | 668799.5 | 5314281.4 | 0.296              |
| 1473007 | Mariposa     | 2015 | 668804.1 | 5314281.1 | 0.154              |
| 1473008 | Mariposa     | 2015 | 668839.3 | 5314224.6 | 0.052              |
| 1473009 | Mariposa     | 2015 | 668853.2 | 5314224.1 | 0.167              |
| 1473010 | Mariposa     | 2015 | 668865.7 | 5314232.4 | 0.173              |
| 1473011 | Mariposa     | 2015 | 668881.7 | 5314226.3 | 0.301              |
| 1473012 | Mariposa     | 2015 | 668826.0 | 5314237.0 | 1.270              |
| 1473013 | Cooper       | 2015 | 669193.0 | 5318715.0 | 0.017              |
| 1473014 | Cooper       | 2015 | 669218.0 | 5318685.0 | 0.006              |

| Sample  | Area    | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|---------|------|----------|-----------|--------------------|
| 1473015 | Cooper  | 2015 | 669258.0 | 5318686.0 | 0.005              |
| 1473016 | Cooper  | 2015 | 669253.0 | 5318591.0 | 0.005              |
| 1473017 | Cooper  | 2015 | 669469.0 | 5318429.0 | 0.005              |
| 1473018 | Cooper  | 2015 | 669449.0 | 5318461.0 | 0.241              |
| 1473019 | Cooper  | 2015 | 669449.0 | 5318461.0 | 0.126              |
| 1473020 | Cooper  | 2015 | 669376.0 | 5318535.0 | 0.020              |
| 1473021 | Cooper  | 2015 | 669353.0 | 5318575.0 | 0.005              |
| 1473022 | Cooper  | 2015 | 669282.0 | 5318622.0 | 0.005              |
| 1473023 | Jubilee | 2015 | 667930.0 | 5316243.0 | 50.800             |
| 1473024 | Surluga | 2015 | 668238.0 | 5317259.0 | 0.018              |
| 1473025 | Surluga | 2015 | 668272.0 | 5317319.0 | 0.036              |
| 1473026 | Surluga | 2015 | 668258.0 | 5317338.0 | 0.020              |
| 1473027 | Surluga | 2015 | 668310.0 | 5317531.0 | 0.018              |
| 1473051 | Cooper  | 2015 | 669518.1 | 5317996.2 | 34.100             |
| 1473052 | Cooper  | 2015 | 669518.1 | 5317996.2 | 3.140              |
| 1473053 | Cooper  | 2015 | 669518.1 | 5317996.2 | 0.281              |
| 1473054 | Cooper  | 2015 | 669575.8 | 5317989.2 | 0.005              |
| 1473055 | Cooper  | 2015 | 669635.4 | 5317921.8 | 0.009              |
| 1473056 | Cooper  | 2015 | 669653.2 | 5317918.1 | 0.940              |
| 1473057 | Cooper  | 2015 | 669653.2 | 5317918.1 | 1.010              |
| 1473058 | Cooper  | 2015 | 669653.2 | 5317918.1 | 0.005              |
| 1473059 | Cooper  | 2015 | 669653.2 | 5317918.1 | 25.400             |
| 1473060 | Cooper  | 2015 | 669653.2 | 5317918.1 | 0.048              |
| 1473061 | Cooper  | 2015 | 669645.8 | 5318218.9 | 0.009              |
| 1473062 | Cooper  | 2015 | 669645.8 | 5318218.9 | 0.005              |
| 1473063 | Cooper  | 2015 | 669645.8 | 5318218.9 | 0.008              |
| 1473064 | Cooper  | 2015 | 669765.7 | 5318613.1 | 0.005              |
| 1473065 | Cooper  | 2015 | 669765.7 | 5318613.1 | 0.035              |
| 1473066 | Cooper  | 2015 | 669763.3 | 5318605.4 | 0.005              |
| 1473067 | Cooper  | 2015 | 669763.3 | 5318605.4 | 0.039              |
| 1473068 | Cooper  | 2015 | 669763.3 | 5318605.4 | 0.005              |
| 1473069 | Cooper  | 2015 | 669763.3 | 5318605.4 | 0.005              |
| 1473070 | Cooper  | 2015 | 669846.5 | 5318514.2 | 0.005              |
| 1473071 | Cooper  | 2015 | 669789.5 | 5318465.1 | 0.005              |
| 1473072 | Cooper  | 2015 | 669789.5 | 5318465.1 | 0.005              |
| 1473073 | Cooper  | 2015 | 669789.5 | 5318465.1 | 0.005              |
| 1473074 | Cooper  | 2015 | 669795.7 | 5318452.8 | 0.005              |
| 1473075 | Surluga | 2015 | 668072.5 | 5317515.3 | 0.012              |

| Sample  | Area              | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|-------------------|------|----------|-----------|--------------------|
| 1473076 | Sunrise           | 2015 | 669202.7 | 5315668.1 | 0.005              |
| 1473077 | Sunrise           | 2015 | 669202.7 | 5315668.1 | 0.006              |
| 1473078 | Sunrise           | 2015 | 669214.1 | 5315664.0 | 0.005              |
| 1473079 | Sunrise           | 2015 | 669210.2 | 5315670.0 | 0.005              |
| 1473080 | Sunrise           | 2015 | 669214.1 | 5315664.0 | 0.005              |
| 1473081 | Sunrise           | 2015 | 669019.1 | 5315700.5 | 0.066              |
| 1473082 | Minto             | 2015 | 667883.8 | 5315941.1 | 0.005              |
| 1473083 | Minto             | 2015 | 667914.6 | 5315966.1 | 0.005              |
| 1473084 | Surluga           | 2015 | 668079.3 | 5317534.2 | 3.860              |
| 1473085 | Surluga           | 2015 | 668079.3 | 5317534.2 | 1.520              |
| 1473086 | Surluga           | 2015 | 668072.5 | 5317515.3 | 0.024              |
| 1473087 | Surluga           | 2015 | 668042.5 | 5317459.8 | 3.150              |
| 1473088 | Minto             | 2015 | 667977.1 | 5315850.4 | 0.229              |
| 1473089 | Sunrise           | 2015 | 669170.0 | 5315691.4 | 0.747              |
| 1473090 | Minto             | 2015 | 667883.8 | 5315941.1 | 0.005              |
| 1473091 | Sunrise           | 2015 | 669210.2 | 5315670.0 | 0.683              |
| 1473092 | Sunrise           | 2015 | 669170.0 | 5315691.4 | 0.005              |
| 1473093 | Cooper            | 2015 | 669158.1 | 5318737.3 | 0.005              |
| 1473094 | Minto             | 2015 | 667977.1 | 5315850.4 | 0.007              |
| 1473095 | Minto             | 2015 | 667883.9 | 5315952.6 | 0.005              |
| 1473101 | South Blackington | 2015 | 669710.0 | 5312710.0 | 0.005              |
| 1473102 | South Blackington | 2015 | 669678.0 | 5312802.0 | 0.005              |
| 1473104 | South Blackington | 2015 | 669626.0 | 5312815.0 | 0.005              |
| 1473105 | South Blackington | 2015 | 669926.0 | 5312432.0 | 0.005              |
| 17363   | Surluga           | 2016 | 668232.2 | 5317279.4 | 0.046              |
| 17364   | Surluga           | 2016 | 668233.2 | 5317279.1 | 0.012              |
| 17365   | Surluga           | 2016 | 668234.1 | 5317278.2 | 0.011              |
| 17366   | Surluga           | 2016 | 668234.7 | 5317277.7 | 0.012              |
| 18401   | Parkhill          | 2016 | 668336.1 | 5314480.7 | 0.005              |
| 18402   | Jubilee South     | 2016 | 667848.7 | 5314266.4 | 0.005              |
| 18403   | Jubilee South     | 2016 | 667777.1 | 5314212.2 | 0.007              |
| 18404   | Jubilee South     | 2016 | 667777.1 | 5314212.2 | 0.011              |
| 18405   | Jubilee South     | 2016 | 667777.1 | 5314212.2 | 0.088              |
| 18406   | Jubilee South     | 2016 | 667737.0 | 5314139.5 | 0.030              |
| 18407   | Jubilee South     | 2016 | 667737.0 | 5314139.5 | 0.005              |
| 18408   | Jubilee South     | 2016 | 667737.0 | 5314139.5 | 0.020              |
| 18409   | Jubilee South     | 2016 | 667737.0 | 5314139.5 | 0.114              |
| 18410   | Jubilee South     | 2016 | 667706.6 | 5314116.7 | 0.020              |

| Sample | Area        | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-------------|------|----------|-----------|--------------------|
| 18451  | Blackington | 2016 | 669413.3 | 5313693.2 | 0.005              |
| 18452  | Blackington | 2016 | 669406.3 | 5313685.6 | 0.005              |
| 18453  | Blackington | 2016 | 669407.4 | 5313682.5 | 0.005              |
| 18454  | Blackington | 2016 | 669398.9 | 5313687.4 | 0.005              |
| 18455  | Blackington | 2016 | 669439.0 | 5313622.8 | 0.097              |
| 18456  | Blackington | 2016 | 669439.0 | 5313622.8 | 0.012              |
| 18457  | Blackington | 2016 | 669439.0 | 5313622.8 | 0.018              |
| 18458  | Blackington | 2016 | 669439.0 | 5313622.8 | 0.071              |
| 18459  | Blackington | 2016 | 669450.6 | 5313607.2 | 0.132              |
| 18460  | Blackington | 2016 | 669452.0 | 5313600.0 | 0.010              |
| 18461  | Blackington | 2016 | 669435.8 | 5313622.7 | 0.011              |
| 18462  | Surluga     | 2016 | 668271.0 | 5317017.6 | 0.005              |
| 18463  | Surluga     | 2016 | 668271.0 | 5317017.6 | 0.005              |
| 18464  | DarwinGrace | 2016 | 667952.5 | 5313635.2 | 0.364              |
| 18465  | DarwinGrace | 2016 | 667844.9 | 5313687.0 | 0.082              |
| 18466  | DarwinGrace | 2016 | 667805.9 | 5313716.8 | 0.005              |
| 18467  | DarwinGrace | 2016 | 667763.3 | 5313759.8 | 0.005              |
| 18468  | DarwinGrace | 2016 | 667763.3 | 5313759.8 | 0.005              |
| 18469  | DarwinGrace | 2016 | 667751.6 | 5313768.6 | 0.005              |
| 18470  | DarwinGrace | 2016 | 667756.8 | 5313778.0 | 0.005              |
| 18471  | DarwinGrace | 2016 | 667728.5 | 5313787.2 | 0.216              |
| 18472  | DarwinGrace | 2016 | 667674.3 | 5313715.7 | 0.005              |
| 18473  | DarwinGrace | 2016 | 667652.6 | 5313699.9 | 0.019              |
| 18474  | DarwinGrace | 2016 | 667652.5 | 5313677.3 | 0.017              |
| 18475  | DarwinGrace | 2016 | 667722.0 | 5313591.1 | 0.008              |
| 18476  | DarwinGrace | 2016 | 667938.0 | 5313543.2 | 0.017              |
| 18477  | Surluga     | 2016 | 668003.2 | 5316723.4 | 0.005              |
| 18478  | Surluga     | 2016 | 668003.2 | 5316723.4 | 0.032              |
| 18479  | Surluga     | 2016 | 667993.0 | 5316729.2 | 0.011              |
| 18480  | Surluga     | 2016 | 667980.4 | 5316747.2 | 0.005              |
| 18481  | DarwinGrace | 2016 | 668469.0 | 5313564.5 | 0.010              |
| 18482  | DarwinGrace | 2016 | 668469.0 | 5313564.5 | 143.100            |
| 18483  | DarwinGrace | 2016 | 668469.0 | 5313564.5 | 0.020              |
| 18484  | DarwinGrace | 2016 | 668446.4 | 5313565.7 | 0.078              |
| 18485  | DarwinGrace | 2016 | 667723.6 | 5313360.3 | 0.005              |
| 18486  | DarwinGrace | 2016 | 667668.6 | 5313407.8 | 0.005              |
| 18487  | DarwinGrace | 2016 | 667588.0 | 5313528.2 | 0.005              |
| 18488  | DarwinGrace | 2016 | 667588.0 | 5313528.2 | 0.005              |

| Sample  | Area              | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|-------------------|------|----------|-----------|--------------------|
| 18489   | DarwinGrace       | 2016 | 667569.3 | 5313525.2 | 0.005              |
| 18490   | DarwinGrace       | 2016 | 667520.1 | 5313558.9 | 0.005              |
| 18491   | DarwinGrace       | 2016 | 667512.2 | 5313564.2 | 0.006              |
| 18492   | DarwinGrace       | 2016 | 668292.2 | 5313477.9 | 1.650              |
| 18493   | DarwinGrace       | 2016 | 668292.2 | 5313477.9 | 3.420              |
| 1473351 | Surluga           | 2016 | 668044.0 | 5316687.0 | 20.900             |
| 1473352 | South Blackington | 2016 | 670300.0 | 5312474.0 | 0.005              |
| 1473353 | South Blackington | 2016 | 670432.0 | 5312424.0 | 0.005              |
| 1473354 | South Blackington | 2016 | 670250.0 | 5312301.0 | 0.005              |
| 1473355 | South Blackington | 2016 | 669379.0 | 5312185.0 | 0.005              |
| 1473368 | Minto             | 2016 | 667819.3 | 5315034.9 | 0.005              |
| 1473369 | Minto             | 2016 | 667833.7 | 5315048.8 | 0.277              |
| 1473370 | Minto             | 2016 | 667830.0 | 5315050.8 | 3.160              |
| 1473371 | Minto             | 2016 | 667830.2 | 5315096.2 | 0.221              |
| 1473372 | Minto             | 2016 | 667832.8 | 5315143.7 | 0.005              |
| 1473373 | Minto             | 2016 | 668596.0 | 5315515.3 | 0.005              |
| 1473374 | Minto             | 2016 | 668596.0 | 5315515.3 | 0.017              |
| 1473375 | Minto             | 2016 | 668606.2 | 5315512.3 | 0.019              |
| 1473376 | Minto             | 2016 | 668606.2 | 5315512.3 | 2.480              |
| 1473377 | Minto             | 2016 | 667787.6 | 5315225.7 | 0.005              |
| 1473378 | Minto             | 2016 | 667783.6 | 5315208.3 | 0.009              |
| 1473379 | Minto             | 2016 | 667765.4 | 5315256.5 | 0.015              |
| 1473380 | Minto             | 2016 | 667737.6 | 5315240.1 | 1.320              |
| 1473381 | Minto             | 2016 | 667679.6 | 5315393.6 | 0.005              |
| 1473382 | Minto             | 2016 | 667679.2 | 5315412.0 | 0.005              |
| 1473383 | Minto             | 2016 | 667679.2 | 5315412.0 | 0.032              |
| 1473384 | Jubilee           | 2016 | 668292.2 | 5316321.7 | 0.005              |
| 1473385 | Jubilee           | 2016 | 668292.2 | 5316321.7 | 0.008              |
| 1473386 | Jubilee           | 2016 | 668197.6 | 5316248.9 | 0.030              |
| 1473387 | Jubilee           | 2016 | 668205.3 | 5316248.8 | 0.005              |
| 1473388 | Jubilee           | 2016 | 668248.6 | 5316273.0 | 0.008              |
| 1473389 | Jubilee           | 2016 | 668271.7 | 5316303.7 | 0.010              |
| 1473390 | Jubilee           | 2016 | 668260.9 | 5316333.4 | 0.005              |
| 1473391 | Jubilee           | 2016 | 668257.3 | 5316348.9 | 0.005              |
| 1473392 | Jubilee           | 2016 | 668257.3 | 5316348.9 | 0.022              |
| 1473393 | Cooper            | 2016 | 669770.9 | 5318710.7 | 0.005              |
| 1473394 | Cooper            | 2016 | 669779.0 | 5318723.4 | 0.029              |
| 1473395 | Cooper            | 2016 | 669703.9 | 5318682.1 | 0.005              |

| Sample  | Area    | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|---------|------|----------|-----------|--------------------|
| 1473396 | Cooper  | 2016 | 669703.9 | 5318682.1 | 0.005              |
| 1473397 | Cooper  | 2016 | 670012.5 | 5319225.5 | 0.005              |
| 1473398 | Cooper  | 2016 | 669890.0 | 5319010.3 | 0.005              |
| 1473399 | Cooper  | 2016 | 669890.0 | 5319010.3 | 0.005              |
| 1473400 | Cooper  | 2016 | 669752.2 | 5318881.9 | 0.005              |
| 1473951 | Minto   | 2016 | 668140.0 | 5315522.0 | 0.017              |
| 1473952 | Surluga | 2016 | 668050.0 | 5316691.0 | 0.005              |
| 1473953 | Surluga | 2016 | 668050.0 | 5316691.0 | 12.400             |
| 1473954 | Surluga | 2016 | 668040.0 | 5316695.0 | 1.540              |
| 1473955 | Surluga | 2016 | 668016.0 | 5316711.0 | 5.330              |
| 1473956 | Surluga | 2016 | 668013.0 | 5316714.0 | 0.020              |
| 1473957 | Surluga | 2016 | 668013.0 | 5316714.0 | 0.023              |
| 1473958 | Minto   | 2016 | 668249.0 | 5315968.0 | 0.010              |
| 1473959 | Minto   | 2016 | 668249.0 | 5315968.0 | 0.060              |
| 1473960 | Minto   | 2016 | 668249.0 | 5315968.0 | 0.017              |
| 1473961 | Surluga | 2016 | 668252.0 | 5317002.0 | 0.005              |
| 1473962 | Surluga | 2016 | 668272.0 | 5316997.0 | 0.005              |
| 1473963 | Surluga | 2016 | 668289.0 | 5316731.0 | 43.100             |
| 1473964 | Surluga | 2016 | 668113.0 | 5316586.0 | 3.150              |
| 1473965 | Surluga | 2016 | 667994.0 | 5316729.0 | 0.021              |
| 1473966 | Surluga | 2016 | 667819.0 | 5316883.0 | 0.005              |
| 1473967 | Surluga | 2016 | 667819.0 | 5316883.0 | 0.005              |
| 1473968 | Surluga | 2016 | 667917.0 | 5316814.0 | 0.005              |
| 1473973 | Surluga | 2016 | 668193.0 | 5316994.0 | 3.510              |
| 1473974 | Jubilee | 2016 | 668290.5 | 5316332.3 | 0.005              |
| 1473975 | Jubilee | 2016 | 668290.5 | 5316332.3 | 0.005              |
| 1473976 | Jubilee | 2016 | 668303.8 | 5316350.9 | 0.005              |
| 1473977 | Surluga | 2016 | 668235.1 | 5316818.4 | 64.900             |
| 1473978 | Surluga | 2016 | 668366.0 | 5317910.0 | 0.046              |
| 1473979 | Surluga | 2016 | 668366.0 | 5317910.0 | 0.007              |
| 1473980 | Surluga | 2016 | 668366.0 | 5317910.0 | 0.035              |
| 1473981 | Surluga | 2016 | 668517.1 | 5317984.6 | 1.530              |
| 1473982 | Surluga | 2016 | 668517.1 | 5317984.6 | 0.061              |
| 1473983 | Jubilee | 2016 | 668247.0 | 5316482.0 | 0.026              |
| 1473984 | Jubilee | 2016 | 668357.0 | 5316505.0 | 0.005              |
| 1473985 | Jubilee | 2016 | 668385.0 | 5316317.0 | 0.005              |
| 1473986 | Cooper  | 2016 | 670382.3 | 5318912.4 | 0.005              |
| 1473987 | Cooper  | 2016 | 670382.3 | 5318912.4 | 0.005              |

| Sample  | Area          | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|---------|---------------|------|----------|-----------|--------------------|
| 1473988 | Cooper        | 2016 | 670071.2 | 5318571.3 | 0.006              |
| 1473989 | Surluga       | 2016 | 668419.9 | 5317895.0 | 0.005              |
| 1473990 | Surluga       | 2016 | 668419.9 | 5317896.4 | 0.049              |
| 1473991 | Blackington   | 2016 | 669008.7 | 5314032.3 | 0.027              |
| 1473992 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.007              |
| 1473993 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.079              |
| 1473994 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.113              |
| 1473995 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.032              |
| 1473996 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.009              |
| 1473997 | Blackington   | 2016 | 669039.0 | 5314020.0 | 0.005              |
| 1473998 | Blackington   | 2016 | 669031.6 | 5314050.2 | 0.036              |
| 1473999 | Blackington   | 2016 | 669031.6 | 5314050.2 | 0.079              |
| 1474000 | Blackington   | 2016 | 669034.7 | 5314067.3 | 0.007              |
| 17924   | Minto         | 2017 | 668334.0 | 5315026.0 | 0.005              |
| 17925   | Minto         | 2017 | 668334.0 | 5315026.0 | 0.005              |
| 17926   | Minto         | 2017 | 668264.0 | 5314908.0 | 0.011              |
| 17927   | Minto         | 2017 | 668424.0 | 5314867.0 | 0.006              |
| 17928   | Minto         | 2017 | 668424.0 | 5314867.0 | 0.007              |
| 18001   | Jubilee South | 2017 | 667837.0 | 5314508.9 | 0.000              |
| 18002   | Jubilee South | 2017 | 667808.4 | 5314422.4 | 0.000              |
| 18003   | Jubilee South | 2017 | 667810.9 | 5314422.3 | 0.000              |
| 18004   | Jubilee South | 2017 | 667793.6 | 5314287.7 | 0.000              |
| 18005   | Jubilee South | 2017 | 667694.2 | 5314053.9 | 0.000              |
| 18006   | Jubilee South | 2017 | 667684.5 | 5313985.5 | 0.000              |
| 18255   | Minto         | 2017 | 668533.0 | 5314945.0 | 0.005              |
| 18256   | Minto         | 2017 | 668377.0 | 5314950.0 | 0.223              |
| 18418   | Minto         | 2018 | 668372.0 | 5314950.0 | 0.005              |
| 18419   | Minto         | 2018 | 668372.0 | 5314950.0 | 0.314              |
| 18420   | Minto         | 2018 | 668372.0 | 5314950.0 | 0.005              |
| 18421   | Minto         | 2018 | 668403.0 | 5314944.0 | 0.676              |
| 18422   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.005              |
| 18423   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.019              |
| 18424   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.005              |
| 18425   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.006              |
| 18426   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.007              |
| 18427   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.033              |
| 18428   | Minto         | 2018 | 668395.0 | 5314947.0 | 0.045              |
| 18429   | Minto         | 2018 | 668377.0 | 5314950.0 | 0.005              |

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 18430  | Minto        | 2018 | 668377.0 | 5314950.0 | 0.005              |
| 18431  | Minto        | 2018 | 668377.0 | 5314950.0 | 0.006              |
| 18432  | Minto        | 2018 | 668393.0 | 5314946.0 | 0.005              |
| 18433  | Minto        | 2018 | 668402.0 | 5314935.0 | 0.066              |
| 18434  | Minto        | 2018 | 668412.0 | 5314937.0 | 4.430              |
| 18435  | Minto        | 2018 | 668413.0 | 5314934.0 | 0.097              |
| 18436  | Minto        | 2018 | 668429.0 | 5314929.0 | 0.005              |
| 18437  | Minto        | 2018 | 668435.0 | 5314923.0 | 0.005              |
| 18438  | Minto        | 2018 | 668350.0 | 5314907.0 | 0.207              |
| 18439  | Minto        | 2018 | 668346.0 | 5314928.0 | 0.005              |
| 500401 | Mackay Point | 2019 | 668265.0 | 5318627.0 | 0.037              |
| 500402 | Mackay Point | 2019 | 668265.0 | 5318627.0 | 2.640              |
| 500403 | Mackay Point | 2019 | 668265.0 | 5318627.0 | 0.425              |
| 500404 | Mackay Point | 2019 | 668265.0 | 5318627.0 | 2.490              |
| 500405 | Mackay Point | 2019 | 668265.0 | 5318640.0 | 0.014              |
| 500406 | Mackay Point | 2019 | 668265.0 | 5318640.0 | 0.008              |
| 500407 | Mackay Point | 2019 | 668265.0 | 5318640.0 | 0.015              |
| 500408 | Mackay Point | 2019 | 668286.0 | 5318635.0 | 0.048              |
| 500409 | Mackay Point | 2019 | 668286.0 | 5318635.0 | 14.000             |
| 500410 | CooperGanley | 2019 | 669706.0 | 5317899.0 | 0.045              |
| 500411 | CooperGanley | 2019 | 669306.0 | 5318154.0 | 2.620              |
| 500412 | CooperGanley | 2019 | 669285.0 | 5318197.0 | 0.016              |
| 500413 | CooperGanley | 2019 | 669285.0 | 5318197.0 | 0.030              |
| 500414 | CooperGanley | 2019 | 669274.0 | 5318232.0 | 0.005              |
| 500415 | CooperGanley | 2019 | 669550.0 | 5318055.0 | 0.516              |
| 500416 | CooperGanley | 2019 | 669638.0 | 5317921.0 | 0.418              |
| 500417 | CooperGanley | 2019 | 669285.0 | 5318249.0 | 0.014              |
| 500418 | CooperGanley | 2019 | 669378.0 | 5318196.0 | 0.005              |
| 500419 | CooperGanley | 2019 | 669727.0 | 5317976.0 | 0.005              |
| 500420 | CooperGanley | 2019 | 669794.0 | 5318001.0 | 0.005              |
| 500421 | CooperGanley | 2019 | 669575.0 | 5317994.0 | 0.005              |
| 500422 | CooperGanley | 2019 | 669656.0 | 5318148.0 | 0.005              |
| 500423 | CooperGanley | 2019 | 669610.0 | 5318242.0 | 0.010              |
| 500424 | CooperGanley | 2019 | 669610.0 | 5318242.0 | 0.005              |
| 500425 | CooperGanley | 2019 | 669278.0 | 5318019.0 | 0.508              |
| 500426 | CooperGanley | 2019 | 669278.0 | 5318019.0 | 0.242              |
| 500427 | CooperGanley | 2019 | 669430.0 | 5318112.0 | 0.008              |
| 500428 | CooperGanley | 2019 | 669430.0 | 5318112.0 | 0.005              |

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 500429 | CooperGanley | 2019 | 669520.0 | 5318257.0 | 0.005              |
| 500430 | CooperGanley | 2019 | 669351.0 | 5318245.0 | 0.005              |
| 500431 | CooperGanley | 2019 | 669351.0 | 5318245.0 | 0.014              |
| 500432 | CooperGanley | 2019 | 669319.0 | 5318193.0 | 0.005              |
| 500433 | CooperGanley | 2019 | 669244.0 | 5318067.0 | 0.005              |
| 500434 | CooperGanley | 2019 | 669248.0 | 5318061.0 | 0.005              |
| 500435 | CooperGanley | 2019 | 669275.0 | 5318272.0 | 0.023              |
| 500436 | CooperGanley | 2019 | 669271.0 | 5318287.0 | 0.029              |
| 500437 | CooperGanley | 2019 | 669271.0 | 5318287.0 | 0.005              |
| 500438 | CooperGanley | 2019 | 669378.0 | 5318529.0 | 0.044              |
| 500439 | CooperGanley | 2019 | 669010.0 | 5318113.0 | 0.005              |
| 500440 | CooperGanley | 2019 | 669352.0 | 5318580.0 | 0.006              |
| 500441 | CooperGanley | 2019 | 669352.0 | 5318580.0 | 0.010              |
| 500442 | CooperGanley | 2019 | 669287.0 | 5318269.0 | 0.008              |
| 500443 | CooperGanley | 2019 | 669283.0 | 5318635.0 | 0.008              |
| 500444 | CooperGanley | 2019 | 669283.0 | 5318635.0 | 0.021              |
| 500446 | CooperGanley | 2019 | 669164.0 | 5318747.0 | 0.006              |
| 500447 | CooperGanley | 2019 | 669159.0 | 5318755.0 | 0.007              |
| 500448 | CooperGanley | 2019 | 669159.0 | 5318755.0 | 0.005              |
| 500449 | CooperGanley | 2019 | 669140.0 | 5318735.0 | 0.006              |
| 769151 | CooperGanley | 2019 | 669032.0 | 5318640.0 | 0.005              |
| 769152 | CooperGanley | 2019 | 669032.0 | 5318640.0 | 0.010              |
| 769153 | CooperGanley | 2019 | 668994.0 | 5318460.0 | 0.128              |
| 769154 | CooperGanley | 2019 | 668993.0 | 5318461.0 | 0.843              |
| 769155 | JSZ Footwall | 2019 | 668074.0 | 5317542.0 | 0.005              |
| 769156 | JSZ Footwall | 2019 | 667993.0 | 5317458.0 | 0.005              |
| 769157 | JSZ Footwall | 2019 | 667908.0 | 5317347.0 | 0.005              |
| 769158 | JSZ Footwall | 2019 | 667843.0 | 5317236.0 | 0.033              |
| 769159 | JSZ Footwall | 2019 | 667918.0 | 5317182.0 | 0.047              |
| 769160 | JSZ Footwall | 2019 | 667936.0 | 5317054.0 | 0.006              |
| 769161 | JSZ Footwall | 2019 | 667936.0 | 5317054.0 | 0.005              |
| 769162 | JSZ Footwall | 2019 | 667744.0 | 5317225.0 | 0.005              |
| 769163 | JSZ Footwall | 2019 | 667714.0 | 5317212.0 | 0.026              |
| 769164 | JSZ Footwall | 2019 | 667671.0 | 5317149.0 | 0.005              |
| 769165 | JSZ Footwall | 2019 | 667853.0 | 5316996.0 | 0.518              |
| 769166 | JSZ Footwall | 2019 | 667600.0 | 5317117.0 | 0.241              |
| 769167 | JSZ Footwall | 2019 | 667606.0 | 5316994.0 | 0.005              |
| 769168 | JSZ Footwall | 2019 | 667694.0 | 5316897.0 | 0.100              |

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 769169 | JSZ Footwall | 2019 | 667694.0 | 5316897.0 | 0.005              |
| 769170 | JSZ Footwall | 2019 | 667759.0 | 5316819.0 | 0.143              |
| 769171 | JSZ Footwall | 2019 | 667758.0 | 5316735.0 | 0.029              |
| 769172 | JSZ Footwall | 2019 | 667758.0 | 5316735.0 | 0.005              |
| 769173 | JSZ Footwall | 2019 | 667664.0 | 5316801.0 | 0.041              |
| 769174 | JSZ Footwall | 2019 | 667634.0 | 5316812.0 | 0.005              |
| 769175 | JSZ Footwall | 2019 | 667430.0 | 5316918.0 | 0.005              |
| 769176 | JSZ Footwall | 2019 | 667396.0 | 5316890.0 | 0.005              |
| 769177 | JSZ Footwall | 2019 | 667724.0 | 5316280.0 | 0.062              |
| 769178 | JSZ Footwall | 2019 | 667261.0 | 5316722.0 | 0.005              |
| 769179 | JSZ Footwall | 2019 | 667229.0 | 5316564.0 | 0.166              |
| 769180 | JSZ Footwall | 2019 | 667278.0 | 5316392.0 | 0.005              |
| 769181 | JSZ Footwall | 2019 | 667213.0 | 5316102.0 | 0.007              |
| 769182 | JSZ Footwall | 2019 | 666927.0 | 5316239.0 | 0.389              |
| 769183 | JSZ Footwall | 2019 | 667021.0 | 5316268.0 | 0.005              |
| 769184 | JSZ Footwall | 2019 | 667252.0 | 5315837.0 | 0.005              |
| 769185 | DGJSZ        | 2019 | 667502.0 | 5312688.0 | 0.005              |
| 769186 | DGJSZ        | 2019 | 667443.0 | 5312782.0 | 0.008              |
| 769187 | DGJSZ        | 2019 | 667519.0 | 5312844.0 | 0.009              |
| 769188 | DGJSZ        | 2019 | 667519.0 | 5312844.0 | 0.005              |
| 769189 | DGJSZ        | 2019 | 667568.0 | 5313099.0 | 0.005              |
| 769191 | DGJSZ        | 2019 | 667451.0 | 5312995.0 | 0.005              |
| 769192 | DGJSZ        | 2019 | 667405.0 | 5312966.0 | 0.010              |
| 769193 | DGJSZ        | 2019 | 667285.0 | 5312881.0 | 0.024              |
| 769194 | DGJSZ        | 2019 | 667866.0 | 5313497.0 | 0.058              |
| 769195 | DGJSZ        | 2019 | 667569.0 | 5313300.0 | 0.005              |
| 769196 | DGJSZ        | 2019 | 667565.0 | 5313396.0 | 0.007              |
| 769197 | DGJSZ        | 2019 | 667519.0 | 5313299.0 | 0.005              |
| 769198 | DGJSZ        | 2019 | 667320.0 | 5313131.0 | 0.005              |
| 769199 | DGJSZ        | 2019 | 667604.0 | 5313542.0 | 0.005              |
| 769201 | DGJSZ        | 2019 | 667546.0 | 5313488.0 | 0.005              |
| 769202 | DGJSZ        | 2019 | 667457.0 | 5313425.0 | 0.005              |
| 769203 | DGJSZ        | 2019 | 667361.0 | 5313320.0 | 0.005              |
| 769204 | DGJSZ        | 2019 | 667254.0 | 5313268.0 | 0.005              |
| 769205 | DGJSZ        | 2019 | 667603.0 | 5313679.0 | 0.005              |
| 769206 | DGJSZ        | 2019 | 667426.0 | 5313531.0 | 0.005              |
| 769207 | DGJSZ        | 2019 | 667304.0 | 5313466.0 | 0.005              |
| 769208 | DGJSZ        | 2019 | 667201.0 | 5313389.0 | 0.005              |

| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 769211 | DGJSZ        | 2019 | 668018.0 | 5313960.0 | 0.005              |
| 769212 | DGJSZ        | 2019 | 667876.0 | 5314057.0 | 0.010              |
| 769213 | DGJSZ        | 2019 | 667672.0 | 5313896.0 | 0.005              |
| 769214 | DGJSZ        | 2019 | 667627.0 | 5313841.0 | 0.005              |
| 769215 | DGJSZ        | 2019 | 667513.0 | 5313770.0 | 0.005              |
| 769216 | DGJSZ        | 2019 | 667390.0 | 5313723.0 | 0.005              |
| 769217 | DGJSZ        | 2019 | 667216.0 | 5313616.0 | 0.005              |
| 769218 | DGJSZ        | 2019 | 668062.0 | 5314392.0 | 0.010              |
| 769219 | DGJSZ        | 2019 | 668062.0 | 5314392.0 | 0.005              |
| 769220 | DGJSZ        | 2019 | 667772.0 | 5314214.0 | 0.215              |
| 769221 | DGJSZ        | 2019 | 667717.0 | 5314145.0 | 0.020              |
| 769222 | DGJSZ        | 2019 | 667697.0 | 5314092.0 | 0.008              |
| 769223 | DGJSZ        | 2019 | 667454.0 | 5313995.0 | 0.006              |
| 769224 | DGJSZ        | 2019 | 667347.0 | 5313907.0 | 0.027              |
| 769225 | DGJSZ        | 2019 | 668061.0 | 5315038.0 | 0.006              |
| 769226 | DGJSZ        | 2019 | 668007.0 | 5315004.0 | 0.005              |
| 769227 | DGJSZ        | 2019 | 667881.0 | 5314868.0 | 0.014              |
| 769228 | DGJSZ        | 2019 | 667548.0 | 5314972.0 | 0.008              |
| 769229 | DGJSZ        | 2019 | 667548.0 | 5314972.0 | 0.005              |
| 769231 | DGJSZ        | 2019 | 667779.0 | 5314411.0 | 0.005              |
| 769232 | DGJSZ        | 2019 | 667665.0 | 5314386.0 | 0.005              |
| 769233 | DGJSZ        | 2019 | 667656.0 | 5314278.0 | 0.008              |
| 769234 | DGJSZ        | 2019 | 668067.0 | 5314822.0 | 0.066              |
| 769235 | DGJSZ        | 2019 | 667689.0 | 5314409.0 | 0.005              |
| 769236 | DGJSZ        | 2019 | 667711.0 | 5314461.0 | 0.005              |
| 769237 | DGJSZ        | 2019 | 667393.0 | 5314369.0 | 0.005              |
| 769238 | DGJSZ        | 2019 | 667450.0 | 5314449.0 | 0.008              |
| 769239 | DGJSZ        | 2019 | 668019.0 | 5314896.0 | 0.041              |
| 769240 | DGJSZ        | 2019 | 667476.0 | 5314908.0 | 0.005              |
| 769241 | DGJSZ        | 2019 | 667456.0 | 5314700.0 | 0.017              |
| 769242 | DGJSZ        | 2019 | 667431.0 | 5314332.0 | 0.009              |
| 769243 | DGJSZ        | 2019 | 667348.0 | 5314131.0 | 0.005              |
| 769244 | DGJSZ        | 2019 | 667305.0 | 5314106.0 | 0.005              |
| 769245 | DGJSZ        | 2019 | 668330.0 | 5314757.0 | 0.429              |
| 769246 | CG East      | 2019 | 670105.0 | 5317629.0 | 0.025              |
| 769247 | CG East      | 2019 | 669913.0 | 5317615.0 | 0.005              |
| 769248 | Stanley Mine | 2019 | 670313.0 | 5318879.0 | 0.321              |
| 769249 | Stanley Mine | 2019 | 670313.0 | 5318879.0 | 0.157              |
| Sample | Area         | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|--------------|------|----------|-----------|--------------------|
| 769251 | CG East      | 2019 | 670620.0 | 5317885.0 | 0.005              |
| 769252 | CG East      | 2019 | 670257.0 | 5317131.0 | 0.005              |
| 769253 | Stanley Mine | 2019 | 669879.0 | 5318633.0 | 0.006              |
| 769254 | Stanley Mine | 2019 | 669946.0 | 5318790.0 | 0.005              |
| 769255 | Stanley Mine | 2019 | 669729.0 | 5318997.0 | 0.202              |
| 769256 | Stanley Mine | 2019 | 669729.0 | 5318997.0 | 0.054              |
| 769257 | Stanley Mine | 2019 | 669649.0 | 5319152.0 | 0.007              |
| 769258 | Stanley Mine | 2019 | 669872.0 | 5319141.0 | 0.005              |
| 769259 | Stanley Mine | 2019 | 670203.0 | 5318997.0 | 0.005              |
| 769260 | Stanley Mine | 2019 | 670196.0 | 5318998.0 | 0.005              |
| 769261 | Stanley Mine | 2019 | 670196.0 | 5318998.0 | 0.006              |
| 769262 | Stanley Mine | 2019 | 670022.0 | 5319167.0 | 0.005              |
| 769263 | Stanley Mine | 2019 | 670022.0 | 5319167.0 | 0.005              |
| 769266 | Sunrise      | 2020 | 668671.0 | 5315907.0 | 0.005              |
| 769267 | Sunrise      | 2020 | 668679.0 | 5316000.0 | 0.005              |
| 769268 | Sunrise      | 2020 | 668763.0 | 5315903.0 | 0.005              |
| 769269 | Sunrise      | 2020 | 668689.0 | 5316032.0 | 0.006              |
| 769270 | Sunrise      | 2020 | 668814.0 | 5316000.0 | 0.005              |
| 769271 | Sunrise      | 2020 | 668791.0 | 5316088.0 | 0.005              |
| 769272 | Sunrise      | 2020 | 668901.0 | 5315986.0 | 0.006              |
| 769273 | Sunrise      | 2020 | 668720.0 | 5315743.0 | 0.024              |
| 769274 | Sunrise      | 2020 | 668720.0 | 5315743.0 | 0.039              |
| 769275 | Sunrise      | 2020 | 668497.0 | 5315215.0 | 0.005              |
| 769276 | Sunrise      | 2020 | 668497.0 | 5315215.0 | 0.023              |
| 769277 | Sunrise      | 2020 | 668545.0 | 5315903.0 | 0.006              |
| 769278 | Sunrise      | 2020 | 668503.0 | 5315795.0 | 0.072              |
| 769279 | Sunrise      | 2020 | 668518.0 | 5315707.0 | 0.005              |
| 769280 | Sunrise      | 2020 | 668505.0 | 5315709.0 | 0.010              |
| 769282 | Sunrise      | 2020 | 668460.0 | 5315778.0 | 0.005              |
| 769283 | Sunrise      | 2020 | 668468.0 | 5315774.0 | 0.056              |
| 769284 | Sunrise      | 2020 | 668391.0 | 5315855.0 | 0.008              |
| 769285 | Sunrise      | 2020 | 668453.0 | 5315712.0 | 0.005              |
| 769286 | Sunrise      | 2020 | 668506.0 | 5315683.0 | 0.005              |
| 769287 | Sunrise      | 2020 | 668341.0 | 5315746.0 | 0.007              |
| 769288 | Sunrise      | 2020 | 668204.0 | 5315791.0 | 5.230              |
| 769289 | Sunrise      | 2020 | 668199.0 | 5315969.0 | 0.024              |
| 769290 | Sunrise      | 2020 | 668437.0 | 5315842.0 | 0.012              |
| 769291 | Sunrise      | 2020 | 668402.0 | 5315951.0 | 0.047              |

| Sample | Area           | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|----------------|------|----------|-----------|--------------------|
| 769292 | Sunrise        | 2020 | 668402.0 | 5315951.0 | 0.010              |
| 769293 | Sunrise        | 2020 | 668380.0 | 5315968.0 | 0.012              |
| 769294 | Sunrise        | 2020 | 668335.0 | 5316003.0 | 0.025              |
| 769295 | Sunrise        | 2020 | 668281.0 | 5316056.0 | 0.013              |
| 769296 | Sunrise        | 2020 | 668461.0 | 5316051.0 | 0.014              |
| 769297 | Sunrise        | 2020 | 668461.0 | 5316051.0 | 0.016              |
| 769298 | Sunrise        | 2020 | 668644.0 | 5316095.0 | 0.042              |
| 769299 | Sunrise        | 2020 | 668528.0 | 5316136.0 | 0.006              |
| 774510 | Minto 7 Trench | 2020 | 668057.0 | 5315214.0 | 0.005              |
| 774751 | Sunrise        | 2020 | 668523.0 | 5316135.0 | 0.028              |
| 774752 | Sunrise        | 2020 | 668373.0 | 5316252.0 | 0.007              |
| 774753 | Sunrise        | 2020 | 668515.0 | 5316330.0 | 0.005              |
| 774754 | Sunrise        | 2020 | 668736.0 | 5316132.0 | 0.006              |
| 774755 | Sunrise        | 2020 | 668918.0 | 5316006.0 | 2.500              |
| 774757 | Sunrise        | 2020 | 668300.0 | 5315608.0 | 0.016              |
| 774758 | Sunrise        | 2020 | 668300.0 | 5315608.0 | 0.012              |
| 774759 | Sunrise        | 2020 | 668265.0 | 5315663.0 | 0.006              |
| 774760 | Sunrise        | 2020 | 668399.0 | 5315569.0 | 0.045              |
| 774761 | Sunrise        | 2020 | 668248.0 | 5315798.0 | 0.035              |
| 774762 | Sunrise        | 2020 | 668564.0 | 5316352.0 | 0.009              |
| 774763 | Sunrise        | 2020 | 668689.0 | 5316288.0 | 0.048              |
| 774764 | Sunrise        | 2020 | 668989.0 | 5316086.0 | 0.011              |
| 774765 | Sunrise        | 2020 | 669206.0 | 5315898.0 | 0.005              |
| 774766 | Sunrise        | 2020 | 669290.0 | 5315982.0 | 0.006              |
| 774767 | Sunrise        | 2020 | 668991.0 | 5316224.0 | 0.007              |
| 774768 | Sunrise        | 2020 | 668721.0 | 5316403.0 | 0.005              |
| 774769 | Sunrise        | 2020 | 668778.0 | 5316442.0 | 0.008              |
| 774770 | Sunrise        | 2020 | 668781.0 | 5316443.0 | 0.005              |
| 774771 | Sunrise        | 2020 | 668987.0 | 5316345.0 | 0.022              |
| 774772 | Sunrise        | 2020 | 669105.0 | 5316243.0 | 0.011              |
| 774773 | Sunrise        | 2020 | 669221.0 | 5316184.0 | 0.012              |
| 774774 | Sunrise        | 2020 | 669275.0 | 5316270.0 | 0.007              |
| 774775 | Sunrise        | 2020 | 669023.0 | 5316416.0 | 0.079              |
| 774776 | Sunrise        | 2020 | 668801.0 | 5316669.0 | 0.011              |
| 774777 | Sunrise        | 2020 | 669142.0 | 5316455.0 | 0.006              |
| 774778 | Sunrise        | 2020 | 669294.0 | 5316390.0 | 0.006              |
| 774779 | Sunrise        | 2020 | 669149.0 | 5316739.0 | 0.005              |
| 774781 | Sunrise        | 2020 | 669455.0 | 5316582.0 | 0.005              |

| Sample | Area      | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-----------|------|----------|-----------|--------------------|
| 774782 | Sunrise   | 2020 | 669172.0 | 5316510.0 | 0.069              |
| 774783 | Sunrise   | 2020 | 669539.0 | 5316534.0 | 0.007              |
| 774784 | Moody Pit | 2020 | 668642.0 | 5313915.0 | 0.013              |
| 774785 | Moody Pit | 2020 | 668634.0 | 5313907.0 | 0.033              |
| 774786 | Moody Pit | 2020 | 668638.0 | 5313948.0 | 0.008              |
| 774787 | Moody Pit | 2020 | 668628.0 | 5313967.0 | 0.006              |
| 774788 | Moody Pit | 2020 | 668630.0 | 5313963.0 | 0.007              |
| 774789 | Moody Pit | 2020 | 668686.0 | 5314010.0 | 0.006              |
| 774790 | Moody Pit | 2020 | 668674.0 | 5313986.0 | 0.019              |
| 774791 | JSZ South | 2020 | 667782.0 | 5314417.0 | 0.005              |
| 774792 | JSZ South | 2020 | 667783.0 | 5314401.0 | 0.017              |
| 774793 | JSZ South | 2020 | 667842.0 | 5314381.0 | 0.006              |
| 774794 | JSZ South | 2020 | 668030.0 | 5314340.0 | 0.005              |
| 774795 | JSZ South | 2020 | 667780.0 | 5314213.0 | 0.010              |
| 774796 | JSZ South | 2020 | 667773.0 | 5314212.0 | 0.022              |
| 774797 | JSZ South | 2020 | 667829.0 | 5314162.0 | 0.009              |
| 774798 | JSZ South | 2020 | 668088.0 | 5313473.0 | 0.276              |
| 774799 | JSZ South | 2020 | 667937.0 | 5313505.0 | 0.007              |
| 774801 | Sunrise   | 2020 | 668664.0 | 5315551.0 | 0.034              |
| 774802 | Sunrise   | 2020 | 668565.0 | 5315705.0 | 0.008              |
| 774803 | Sunrise   | 2020 | 668662.0 | 5315647.0 | 0.008              |
| 774804 | Sunrise   | 2020 | 668669.0 | 5315633.0 | 0.008              |
| 774805 | JSZ South | 2020 | 668130.0 | 5312489.0 | 0.128              |
| 774806 | JSZ South | 2020 | 667917.0 | 5312516.0 | 0.008              |
| 774807 | JSZ South | 2020 | 667850.0 | 5312532.0 | 0.012              |
| 774808 | JSZ South | 2020 | 667850.0 | 5312532.0 | 0.005              |
| 774809 | JSZ South | 2020 | 668027.0 | 5312391.0 | 0.007              |
| 774810 | JSZ South | 2020 | 668138.0 | 5312391.0 | 0.005              |
| 774811 | JSZ South | 2020 | 667837.0 | 5312811.0 | 0.005              |
| 774812 | JSZ South | 2020 | 667802.0 | 5312807.0 | 0.007              |
| 774813 | JSZ South | 2020 | 667667.0 | 5312871.0 | 0.005              |
| 774814 | JSZ South | 2020 | 667538.0 | 5312905.0 | 0.013              |
| 774815 | JSZ South | 2020 | 667469.0 | 5312919.0 | 0.014              |
| 774816 | JSZ South | 2020 | 667441.0 | 5312926.0 | 0.076              |
| 774817 | JSZ South | 2020 | 667319.0 | 5312981.0 | 0.005              |
| 774818 | JSZ South | 2020 | 667308.0 | 5312985.0 | 0.008              |
| 774819 | JSZ South | 2020 | 667039.0 | 5313035.0 | 0.225              |
| 774821 | JSZ South | 2020 | 667131.0 | 5312923.0 | 0.005              |

| Sample | Area       | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|------------|------|----------|-----------|--------------------|
| 774822 | JSZ South  | 2020 | 667449.0 | 5312823.0 | 0.005              |
| 774823 | JSZ South  | 2020 | 667679.0 | 5312800.0 | 0.005              |
| 774824 | JSZ South  | 2020 | 668239.0 | 5313018.0 | 0.005              |
| 774825 | JSZ South  | 2020 | 667659.0 | 5312688.0 | 0.005              |
| 774826 | JSZ South  | 2020 | 667407.0 | 5312773.0 | 0.008              |
| 774827 | JSZ South  | 2020 | 667372.0 | 5312781.0 | 0.005              |
| 774828 | JSZ South  | 2020 | 667298.0 | 5312797.0 | 0.005              |
| 774829 | JSZ South  | 2020 | 667128.0 | 5312854.0 | 0.005              |
| 774830 | JSZ South  | 2020 | 666966.0 | 5312893.0 | 0.005              |
| 774831 | JSZ South  | 2020 | 666878.0 | 5312912.0 | 0.005              |
| 774832 | JSZ South  | 2020 | 667071.0 | 5312736.0 | 0.005              |
| 774833 | JSZ South  | 2020 | 667276.0 | 5312720.0 | 0.005              |
| 774834 | JSZ South  | 2020 | 667345.0 | 5312684.0 | 0.055              |
| 774835 | JSZ South  | 2020 | 667345.0 | 5312684.0 | 0.069              |
| 774836 | JSZ South  | 2020 | 667443.0 | 5312679.0 | 0.005              |
| 774837 | JSZ South  | 2020 | 667726.0 | 5312501.0 | 0.005              |
| 774838 | JSZ South  | 2020 | 668613.0 | 5312710.0 | 0.005              |
| 774839 | JSZ South  | 2020 | 668606.0 | 5312614.0 | 0.015              |
| 774840 | JSZ South  | 2020 | 668615.0 | 5312618.0 | 0.066              |
| 774841 | JSZ South  | 2020 | 668595.0 | 5312628.0 | 0.690              |
| 774842 | JSZ South  | 2020 | 668183.0 | 5312265.0 | 0.006              |
| 774843 | JSZ South  | 2020 | 667936.0 | 5312341.0 | 0.005              |
| 774844 | JSZ South  | 2020 | 667733.0 | 5312394.0 | 0.005              |
| 774845 | JSZ South  | 2020 | 667451.0 | 5312476.0 | 0.005              |
| 774846 | JSZ South  | 2020 | 667337.0 | 5312513.0 | 0.005              |
| 774847 | JSZ South  | 2020 | 667261.0 | 5312532.0 | 0.008              |
| 774848 | JSZ South  | 2020 | 667144.0 | 5312481.0 | 0.006              |
| 774849 | JSZ South  | 2020 | 667156.0 | 5312465.0 | 0.016              |
| 774851 | JSZ South  | 2020 | 667903.0 | 5313515.0 | 0.007              |
| 774852 | JSZ South  | 2020 | 667778.0 | 5313574.0 | 0.035              |
| 774853 | JSZ South  | 2020 | 667652.0 | 5313631.0 | 0.006              |
| 774854 | JSZ South  | 2020 | 667833.0 | 5313642.0 | 0.377              |
| 774855 | JSZ South  | 2020 | 668045.0 | 5313591.0 | 0.006              |
| 774856 | JSZ South  | 2020 | 668045.0 | 5313591.0 | 0.005              |
| 774857 | Nyman Vein | 2020 | 668586.0 | 5313574.0 | 4.100              |
| 774858 | Nyman Vein | 2020 | 668586.0 | 5313574.0 | 0.009              |
| 774859 | Nyman Vein | 2020 | 668471.0 | 5313669.0 | 0.005              |
| 774861 | Nyman Vein | 2020 | 668423.0 | 5313573.0 | 0.032              |

| Sample | Area       | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|------------|------|----------|-----------|--------------------|
| 774862 | Nyman Vein | 2020 | 668331.0 | 5313585.0 | 0.005              |
| 774863 | JSZ South  | 2020 | 668187.0 | 5313614.0 | 67.900             |
| 774864 | JSZ South  | 2020 | 667952.0 | 5313700.0 | 0.033              |
| 774865 | JSZ South  | 2020 | 668102.0 | 5313759.0 | 0.012              |
| 774866 | JSZ South  | 2020 | 667826.0 | 5315376.0 | 0.032              |
| 774867 | JSZ South  | 2020 | 667826.0 | 5315376.0 | 0.016              |
| 774868 | JSZ South  | 2020 | 667725.0 | 5315152.0 | 0.005              |
| 774869 | JSZ South  | 2020 | 667713.0 | 5315150.0 | 0.005              |
| 774870 | JSZ South  | 2020 | 667533.0 | 5315126.0 | 0.005              |
| 774871 | JSZ South  | 2020 | 667278.0 | 5315124.0 | 0.011              |
| 774872 | JSZ South  | 2020 | 667427.0 | 5315049.0 | 0.548              |
| 774873 | JSZ South  | 2020 | 667427.0 | 5315049.0 | 0.007              |
| 774874 | JSZ South  | 2020 | 667474.0 | 5315061.0 | 0.063              |
| 774875 | JSZ South  | 2020 | 667357.0 | 5315003.0 | 0.011              |
| 774876 | JSZ South  | 2020 | 667200.0 | 5314990.0 | 0.030              |
| 774877 | JSZ South  | 2020 | 667254.0 | 5314343.0 | 0.008              |
| 774878 | JSZ South  | 2020 | 667254.0 | 5314343.0 | 0.006              |
| 774879 | JSZ South  | 2020 | 667385.0 | 5314580.0 | 0.164              |
| 774880 | JSZ South  | 2020 | 667204.0 | 5314588.0 | 0.069              |
| 774881 | JSZ South  | 2020 | 666976.0 | 5314646.0 | 0.005              |
| 774882 | JSZ South  | 2020 | 666749.0 | 5314627.0 | 0.007              |
| 774883 | JSZ South  | 2020 | 666887.0 | 5314593.0 | 0.005              |
| 774884 | JSZ South  | 2020 | 667597.0 | 5315238.0 | 0.005              |
| 774885 | JSZ South  | 2020 | 667027.0 | 5315054.0 | 0.005              |
| 774886 | JSZ South  | 2020 | 667055.0 | 5314916.0 | 0.005              |
| 774887 | JSZ South  | 2020 | 667226.0 | 5314795.0 | 0.020              |
| 774888 | JSZ South  | 2020 | 666883.0 | 5314896.0 | 0.006              |
| 774889 | JSZ South  | 2020 | 666915.0 | 5314760.0 | 0.005              |
| 774890 | JSZ South  | 2020 | 667237.0 | 5314725.0 | 0.005              |
| 774891 | JSZ South  | 2020 | 667219.0 | 5314403.0 | 0.005              |
| 774892 | JSZ South  | 2020 | 666999.0 | 5314417.0 | 0.017              |
| 774893 | JSZ South  | 2020 | 666751.0 | 5314501.0 | 0.007              |
| 774894 | JSZ South  | 2020 | 666754.0 | 5314439.0 | 0.005              |
| 774895 | JSZ South  | 2020 | 666754.0 | 5314439.0 | 0.005              |
| 774896 | JSZ South  | 2020 | 666872.0 | 5314350.0 | 0.005              |
| 774897 | JSZ South  | 2020 | 667162.0 | 5314281.0 | 0.005              |
| 774899 | JSZ South  | 2020 | 667264.0 | 5314233.0 | 0.006              |
| 774901 | JSZ South  | 2020 | 667360.0 | 5314203.0 | 0.005              |

| Sample | Area      | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-----------|------|----------|-----------|--------------------|
| 774902 | JSZ South | 2020 | 667532.0 | 5314137.0 | 0.005              |
| 774903 | JSZ South | 2020 | 667621.0 | 5314135.0 | 0.036              |
| 774904 | JSZ South | 2020 | 667471.0 | 5314309.0 | 0.172              |
| 774905 | JSZ South | 2020 | 668305.0 | 5314744.0 | 0.005              |
| 774906 | JSZ South | 2020 | 668305.0 | 5314744.0 | 0.006              |
| 774907 | JSZ South | 2020 | 668387.0 | 5314555.0 | 0.029              |
| 774908 | JSZ South | 2020 | 668222.0 | 5314537.0 | 0.006              |
| 774909 | JSZ South | 2020 | 668222.0 | 5314537.0 | 0.020              |
| 774910 | JSZ South | 2020 | 668282.0 | 5314577.0 | 0.005              |
| 774911 | JSZ South | 2020 | 668282.0 | 5314577.0 | 0.005              |
| 774912 | JSZ South | 2020 | 668199.0 | 5314376.0 | 0.009              |
| 774913 | JSZ South | 2020 | 668673.0 | 5314023.0 | 6.120              |
| 774914 | JSZ South | 2020 | 668673.0 | 5314023.0 | 11.500             |
| 774915 | JSZ South | 2020 | 668403.0 | 5314109.0 | 0.022              |
| 774916 | JSZ South | 2020 | 668221.0 | 5314097.0 | 0.014              |
| 774917 | JSZ South | 2020 | 668372.0 | 5314012.0 | 0.005              |
| 774918 | JSZ South | 2020 | 667742.0 | 5313967.0 | 0.005              |
| 774919 | JSZ South | 2020 | 667856.0 | 5313984.0 | 0.005              |
| 774920 | JSZ South | 2020 | 668021.0 | 5313928.0 | 0.005              |
| 774921 | JSZ South | 2020 | 668021.0 | 5313928.0 | 0.005              |
| 774922 | JSZ South | 2020 | 668338.0 | 5313841.0 | 0.005              |
| 774923 | JSZ South | 2020 | 667590.0 | 5314069.0 | 0.005              |
| 774924 | JSZ South | 2020 | 667461.0 | 5314093.0 | 0.006              |
| 774925 | JSZ South | 2020 | 667205.0 | 5314166.0 | 0.005              |
| 774926 | JSZ South | 2020 | 666975.0 | 5314223.0 | 0.005              |
| 774927 | JSZ South | 2020 | 666916.0 | 5314192.0 | 0.005              |
| 774928 | JSZ South | 2020 | 667194.0 | 5314075.0 | 0.005              |
| 774929 | JSZ South | 2020 | 667266.0 | 5313954.0 | 0.005              |
| 774930 | JSZ South | 2020 | 667546.0 | 5313772.0 | 0.005              |
| 774931 | JSZ South | 2020 | 667403.0 | 5313775.0 | 0.005              |
| 774932 | JSZ South | 2020 | 667336.0 | 5313843.0 | 0.005              |
| 774933 | JSZ South | 2020 | 667077.0 | 5313826.0 | 0.005              |
| 774934 | JSZ South | 2020 | 667292.0 | 5313747.0 | 0.005              |
| 774935 | JSZ South | 2020 | 667355.0 | 5313719.0 | 0.007              |
| 774936 | JSZ South | 2020 | 667355.0 | 5313719.0 | 0.025              |
| 774937 | JSZ South | 2020 | 667385.0 | 5313722.0 | 0.008              |
| 774938 | JSZ South | 2020 | 667255.0 | 5313538.0 | 0.044              |
| 774939 | JSZ South | 2020 | 667230.0 | 5313675.0 | 0.005              |

| Sample | Area      | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-----------|------|----------|-----------|--------------------|
| 774941 | JSZ South | 2020 | 667153.0 | 5313699.0 | 0.005              |
| 774942 | JSZ South | 2020 | 666859.0 | 5313645.0 | 0.005              |
| 774943 | JSZ South | 2020 | 666980.0 | 5313530.0 | 0.005              |
| 774944 | JSZ South | 2020 | 666954.0 | 5313437.0 | 0.005              |
| 774945 | JSZ South | 2020 | 667100.0 | 5313355.0 | 0.007              |
| 774946 | JSZ South | 2020 | 668618.0 | 5313239.0 | 0.005              |
| 774947 | JSZ South | 2020 | 668393.0 | 5313301.0 | 0.006              |
| 774948 | JSZ South | 2020 | 668249.0 | 5313233.0 | 0.005              |
| 774949 | JSZ South | 2020 | 668249.0 | 5313233.0 | 0.005              |
| 774951 | JSZ South | 2020 | 668291.0 | 5313281.0 | 0.024              |
| 774952 | JSZ South | 2020 | 667933.0 | 5313347.0 | 0.020              |
| 774953 | JSZ South | 2020 | 667839.0 | 5313441.0 | 0.006              |
| 774954 | JSZ South | 2020 | 667666.0 | 5313389.0 | 0.005              |
| 774955 | JSZ South | 2020 | 667666.0 | 5313389.0 | 0.005              |
| 774956 | JSZ South | 2020 | 667718.0 | 5313266.0 | 0.007              |
| 774957 | JSZ South | 2020 | 667806.0 | 5313263.0 | 0.005              |
| 774958 | JSZ South | 2020 | 668164.0 | 5313118.0 | 0.005              |
| 774959 | JSZ South | 2020 | 668410.0 | 5313180.0 | 0.007              |
| 774960 | JSZ South | 2020 | 668586.0 | 5313098.0 | 0.058              |
| 774961 | JSZ South | 2020 | 668802.0 | 5313051.0 | 0.006              |
| 774962 | JSZ South | 2020 | 668683.0 | 5312985.0 | 0.005              |
| 774963 | JSZ South | 2020 | 668592.0 | 5313030.0 | 0.012              |
| 774964 | JSZ South | 2020 | 668486.0 | 5313066.0 | 0.079              |
| 774965 | JSZ South | 2020 | 668408.0 | 5313088.0 | 0.282              |
| 774966 | JSZ South | 2020 | 668381.0 | 5313090.0 | 0.006              |
| 774967 | JSZ South | 2020 | 668206.0 | 5313104.0 | 0.009              |
| 774968 | JSZ South | 2020 | 668183.0 | 5313085.0 | 8.920              |
| 774969 | JSZ South | 2020 | 668183.0 | 5313085.0 | 0.005              |
| 774970 | JSZ South | 2020 | 668265.0 | 5312993.0 | 0.015              |
| 774971 | JSZ South | 2020 | 667978.0 | 5313093.0 | 0.301              |
| 774972 | JSZ South | 2020 | 667785.0 | 5313172.0 | 0.005              |
| 774973 | JSZ South | 2020 | 667705.0 | 5313215.0 | 0.005              |
| 774974 | JSZ South | 2020 | 667649.0 | 5313220.0 | 0.030              |
| 774975 | JSZ South | 2020 | 667639.0 | 5313077.0 | 0.012              |
| 774976 | JSZ South | 2020 | 667901.0 | 5312992.0 | 0.005              |
| 774977 | JSZ South | 2020 | 668109.0 | 5312937.0 | 0.005              |
| 774978 | JSZ South | 2020 | 668300.0 | 5313042.0 | 0.005              |
| 774979 | JSZ South | 2020 | 667537.0 | 5313111.0 | 0.005              |

| Sample | Area      | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-----------|------|----------|-----------|--------------------|
| 774981 | JSZ South | 2020 | 667464.0 | 5313146.0 | 0.005              |
| 774982 | JSZ South | 2020 | 667317.0 | 5313184.0 | 0.005              |
| 774983 | JSZ South | 2020 | 667317.0 | 5313184.0 | 0.020              |
| 774984 | JSZ South | 2020 | 667322.0 | 5313075.0 | 0.008              |
| 774985 | JSZ South | 2020 | 667356.0 | 5313063.0 | 0.005              |
| 774986 | JSZ South | 2020 | 667786.0 | 5312923.0 | 0.018              |
| 774987 | JSZ South | 2020 | 668068.0 | 5312848.0 | 0.005              |
| 774988 | JSZ South | 2020 | 668241.0 | 5312600.0 | 0.005              |
| 774989 | JSZ South | 2020 | 668173.0 | 5312640.0 | 0.005              |
| 774990 | JSZ South | 2020 | 668038.0 | 5312721.0 | 0.039              |
| 774991 | JSZ South | 2020 | 667967.0 | 5312679.0 | 0.408              |
| 774992 | JSZ South | 2020 | 668106.0 | 5312557.0 | 0.005              |
| 774993 | JSZ South | 2020 | 668416.0 | 5312462.0 | 0.005              |
| 774994 | JSZ South | 2020 | 668452.0 | 5312470.0 | 0.014              |
| 774995 | JSZ South | 2020 | 668343.0 | 5312420.0 | 0.137              |
| 774996 | JSZ South | 2020 | 668257.0 | 5312463.0 | 6.750              |
| 774997 | JSZ South | 2020 | 668257.0 | 5312463.0 | 13.700             |
| 774998 | JSZ South | 2020 | 668223.0 | 5312458.0 | 0.028              |
| 774999 | JSZ South | 2020 | 668223.0 | 5312458.0 | 0.006              |
| 799501 | JSZ South | 2020 | 667264.0 | 5312415.0 | 0.005              |
| 799502 | JSZ South | 2020 | 667557.0 | 5312332.0 | 0.005              |
| 799503 | JSZ South | 2020 | 667868.0 | 5312265.0 | 0.005              |
| 799504 | JSZ South | 2020 | 668058.0 | 5312203.0 | 0.005              |
| 799505 | JSZ South | 2020 | 667382.0 | 5311997.0 | 0.005              |
| 799506 | JSZ South | 2020 | 667231.0 | 5312030.0 | 0.005              |
| 799507 | JSZ South | 2020 | 666974.0 | 5312115.0 | 0.005              |
| 799508 | JSZ South | 2020 | 666904.0 | 5312205.0 | 0.005              |
| 799509 | JSZ South | 2020 | 667146.0 | 5312172.0 | 0.005              |
| 799510 | JSZ South | 2020 | 667228.0 | 5312139.0 | 0.010              |
| 799511 | JSZ South | 2020 | 667746.0 | 5311979.0 | 0.005              |
| 799512 | JSZ South | 2020 | 668376.0 | 5312263.0 | 0.005              |
| 799513 | JSZ South | 2020 | 668170.0 | 5312324.0 | 0.005              |
| 799514 | JSZ South | 2020 | 668146.0 | 5312330.0 | 4.610              |
| 799515 | JSZ South | 2020 | 668146.0 | 5312330.0 | 3.410              |
| 799516 | JSZ South | 2020 | 668083.0 | 5312447.0 | 0.029              |
| 799517 | JSZ South | 2020 | 668243.0 | 5312399.0 | 0.007              |
| 799518 | JSZ South | 2020 | 668271.0 | 5312393.0 | 10.700             |
| 799519 | JSZ South | 2020 | 668271.0 | 5312393.0 | 8.720              |

| Sample | Area          | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|---------------|------|----------|-----------|--------------------|
| 799521 | JSZ South     | 2020 | 668271.0 | 5312393.0 | 0.213              |
| 799522 | JSZ South     | 2020 | 668294.0 | 5312415.0 | 18.100             |
| 799523 | JSZ South     | 2020 | 668294.0 | 5312415.0 | 18.400             |
| 799525 | JSZ South     | 2020 | 668358.0 | 5312363.0 | 0.018              |
| 799526 | JSZ South     | 2020 | 668434.0 | 5312341.0 | 0.288              |
| 799527 | JSZ South     | 2020 | 668434.0 | 5312341.0 | 1.630              |
| 799528 | JSZ South     | 2020 | 667230.0 | 5312660.0 | 0.005              |
| 799529 | JSZ South     | 2020 | 667083.0 | 5312678.0 | 0.005              |
| 799530 | JSZ South     | 2020 | 666915.0 | 5312738.0 | 0.005              |
| 799531 | JSZ South     | 2020 | 666997.0 | 5312599.0 | 0.005              |
| 799532 | JSZ South     | 2020 | 667122.0 | 5312583.0 | 0.005              |
| 799533 | JSZ South     | 2020 | 667215.0 | 5312546.0 | 0.005              |
| 799534 | JSZ South     | 2020 | 666902.0 | 5312502.0 | 0.005              |
| 799535 | JSZ South     | 2020 | 666985.0 | 5312393.0 | 0.005              |
| 799536 | JSZ South     | 2020 | 667381.0 | 5312080.0 | 0.005              |
| 799537 | JSZ South     | 2020 | 667381.0 | 5312080.0 | 0.032              |
| 799538 | JSZ South     | 2020 | 668361.0 | 5313657.0 | 0.005              |
| 799539 | JSZ South     | 2020 | 668263.0 | 5313624.0 | 0.011              |
| 799540 | JSZ South     | 2020 | 668191.0 | 5313686.0 | 0.005              |
| 799541 | JSZ South     | 2020 | 668158.0 | 5313695.0 | 0.018              |
| 799542 | JSZ South     | 2020 | 668192.0 | 5313610.0 | 0.005              |
| 799543 | Anderson Lake | 2020 | 668023.0 | 5317750.0 | 0.018              |
| 799544 | Anderson Lake | 2020 | 668092.0 | 5317683.0 | 0.005              |
| 799545 | Anderson Lake | 2020 | 668116.0 | 5317633.0 | 0.655              |
| 799546 | Anderson Lake | 2020 | 668116.0 | 5317633.0 | 0.005              |
| 799547 | Anderson Lake | 2020 | 667905.0 | 5317714.0 | 0.005              |
| 799548 | Anderson Lake | 2020 | 667905.0 | 5317714.0 | 0.005              |
| 799549 | Anderson Lake | 2020 | 667788.0 | 5317809.0 | 0.020              |
| 799551 | Anderson Lake | 2020 | 667788.0 | 5317809.0 | 0.005              |
| 799552 | Anderson Lake | 2020 | 667704.0 | 5317805.0 | 0.005              |
| 799553 | Anderson Lake | 2020 | 667737.0 | 5317756.0 | 0.005              |
| 799554 | Anderson Lake | 2020 | 667876.0 | 5317628.0 | 0.017              |
| 799555 | Anderson Lake | 2020 | 667876.0 | 5317628.0 | 0.005              |
| 799556 | Anderson Lake | 2020 | 667928.0 | 5317600.0 | 0.005              |
| 799557 | Anderson Lake | 2020 | 667775.0 | 5317598.0 | 0.010              |
| 799558 | JSZ South     | 2020 | 668005.0 | 5312113.0 | 0.005              |
| 799559 | JSZ South     | 2020 | 667910.0 | 5312110.0 | 0.005              |
| 799561 | JSZ South     | 2020 | 667618.0 | 5312224.0 | 0.015              |

| Sample | Area          | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|---------------|------|----------|-----------|--------------------|
| 799562 | JSZ South     | 2020 | 667549.0 | 5312253.0 | 0.012              |
| 799563 | JSZ South     | 2020 | 667549.0 | 5312253.0 | 0.014              |
| 799564 | JSZ South     | 2020 | 667441.0 | 5312259.0 | 0.005              |
| 799565 | JSZ South     | 2020 | 667252.0 | 5312319.0 | 0.005              |
| 799566 | JSZ South     | 2020 | 667024.0 | 5312292.0 | 0.005              |
| 799567 | JSZ South     | 2020 | 667188.0 | 5312235.0 | 0.005              |
| 799568 | JSZ South     | 2020 | 667220.0 | 5312229.0 | 0.007              |
| 799569 | Anderson Lake | 2020 | 667706.0 | 5317637.0 | 0.005              |
| 799570 | Anderson Lake | 2020 | 667630.0 | 5317743.0 | 0.005              |
| 799571 | Anderson Lake | 2020 | 667522.0 | 5317685.0 | 0.005              |
| 799572 | Anderson Lake | 2020 | 667681.0 | 5317576.0 | 0.008              |
| 799573 | Anderson Lake | 2020 | 667738.0 | 5317501.0 | 0.006              |
| 799574 | Anderson Lake | 2020 | 667778.0 | 5317427.0 | 0.005              |
| 799575 | Anderson Lake | 2020 | 667596.0 | 5317526.0 | 0.019              |
| 799576 | Anderson Lake | 2020 | 667596.0 | 5317526.0 | 0.005              |
| 799577 | Anderson Lake | 2020 | 667424.0 | 5317703.0 | 0.005              |
| 799578 | Anderson Lake | 2020 | 667436.0 | 5317551.0 | 0.070              |
| 799579 | Anderson Lake | 2020 | 667548.0 | 5317414.0 | 0.005              |
| 799580 | Anderson Lake | 2020 | 667508.0 | 5317364.0 | 0.005              |
| 799581 | Anderson Lake | 2020 | 667412.0 | 5317414.0 | 0.005              |
| 799582 | Anderson Lake | 2020 | 667222.0 | 5317533.0 | 0.005              |
| 799583 | Anderson Lake | 2020 | 667201.0 | 5317516.0 | 0.005              |
| 799584 | Anderson Lake | 2020 | 666541.0 | 5317280.0 | 0.020              |
| 799585 | Anderson Lake | 2020 | 666579.0 | 5316944.0 | 0.006              |
| 799586 | Anderson Lake | 2020 | 666279.0 | 5316773.0 | 0.005              |
| 799587 | Anderson Lake | 2020 | 666175.0 | 5316773.0 | 0.005              |
| 802565 | War Eagle     | 2021 | 667358.0 | 5311819.0 | 0.005              |
| 802566 | War Eagle     | 2021 | 668188.0 | 5313614.0 | 19.800             |
| 802567 | War Eagle     | 2021 | 668667.0 | 5314023.0 | 4.030              |
| 802568 | War Eagle     | 2021 | 668702.0 | 5314015.0 | 0.574              |
| 802569 | War Eagle     | 2021 | 668702.0 | 5314015.0 | 0.834              |
| 802570 | War Eagle     | 2021 | 668702.0 | 5314015.0 | 0.038              |
| 802571 | War Eagle     | 2021 | 668143.0 | 5312326.0 | 3.170              |
| 802572 | War Eagle     | 2021 | 668273.0 | 5312392.0 | 2.320              |
| 802573 | War Eagle     | 2021 | 668273.0 | 5312392.0 | 0.341              |
| 802574 | War Eagle     | 2021 | 668292.0 | 5312404.0 | 0.173              |
| 802575 | War Eagle     | 2021 | 668259.0 | 5312472.0 | 9.240              |
| 802576 | War Eagle     | 2021 | 668255.0 | 5312478.0 | 9.400              |

| Sample | Area      | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|-----------|------|----------|-----------|--------------------|
| 802577 | QY-21-001 | 2021 | 669118.0 | 5316357.0 | 0.005              |
| 802578 | QY-21-002 | 2021 | 669134.0 | 5316389.0 | 0.005              |
| 802579 | QY-21-003 | 2021 | 669136.0 | 5316394.0 | 0.010              |
| 802580 | QY-21-004 | 2021 | 669165.0 | 5316369.0 | 0.005              |
| 802581 | QY-21-005 | 2021 | 669132.0 | 5316363.0 | 0.005              |
| 802582 | QY-21-006 | 2021 | 669073.0 | 5316416.0 | 0.005              |
| 802583 | QY-21-007 | 2021 | 669029.0 | 5316439.0 | 0.005              |
| 802584 | QY-21-008 | 2021 | 668947.0 | 5316352.0 | 0.005              |
| 802585 | QY-21-009 | 2021 | 668947.0 | 5316352.0 | 0.005              |
| 804094 | War Eagle | 2021 | 668369.0 | 5312531.0 | 0.005              |
| 804095 | War Eagle | 2021 | 668362.0 | 5312527.0 | 0.005              |
| 804096 | War Eagle | 2021 | 668214.0 | 5312414.0 | 0.005              |
| 804097 | War Eagle | 2021 | 668214.0 | 5312416.0 | 0.005              |
| 804098 | War Eagle | 2021 | 668198.0 | 5312399.0 | 0.005              |
| 804099 | War Eagle | 2021 | 668196.0 | 5312395.0 | 0.005              |
| 804100 | War Eagle | 2021 | 668168.0 | 5312291.0 | 0.020              |
| 804102 | War Eagle | 2021 | 668149.0 | 5312259.0 | 0.005              |
| 804103 | War Eagle | 2021 | 668075.0 | 5312342.0 | 0.005              |
| 804104 | War Eagle | 2021 | 668075.0 | 5312422.0 | 0.005              |
| 804105 | War Eagle | 2021 | 668000.0 | 5312577.0 | 0.005              |
| 804106 | War Eagle | 2021 | 667922.0 | 5312560.0 | 0.226              |
| 804107 | War Eagle | 2021 | 667925.0 | 5312560.0 | 0.017              |
| 804108 | War Eagle | 2021 | 667934.0 | 5312582.0 | 0.005              |
| 804109 | War Eagle | 2021 | 668077.0 | 5312518.0 | 0.005              |
| 804110 | War Eagle | 2021 | 668072.0 | 5312525.0 | 0.005              |
| 804111 | War Eagle | 2021 | 667734.0 | 5312382.0 | 0.005              |
| 804112 | War Eagle | 2021 | 668391.0 | 5312351.0 | 0.052              |
| 804113 | War Eagle | 2021 | 668384.0 | 5312349.0 | 0.022              |
| 804114 | War Eagle | 2021 | 668421.0 | 5312339.0 | 0.658              |
| 804115 | War Eagle | 2021 | 668418.0 | 5312328.0 | 0.901              |
| 804116 | War Eagle | 2021 | 668416.0 | 5312330.0 | 0.119              |
| 804117 | War Eagle | 2021 | 668414.0 | 5312326.0 | 1.900              |
| 804118 | War Eagle | 2021 | 668415.0 | 5312324.0 | 2.750              |
| 804119 | War Eagle | 2021 | 668472.0 | 5312392.0 | 0.009              |
| 804120 | War Eagle | 2021 | 668350.0 | 5312254.0 | 0.011              |
| 804121 | War Eagle | 2021 | 668312.0 | 5312224.0 | 0.005              |
| 804122 | War Eagle | 2021 | 668278.0 | 5312210.0 | 0.005              |
| 804123 | War Eagle | 2021 | 668209.0 | 5312230.0 | 0.016              |

| Sample | Area           | Year | Easting  | Northing  | Au (g/t)<br>FA GRA |
|--------|----------------|------|----------|-----------|--------------------|
| 804124 | War Eagle      | 2021 | 668209.0 | 5312229.0 | 0.005              |
| 804125 | War Eagle      | 2021 | 668211.0 | 5312224.0 | 2.090              |
| 804126 | War Eagle      | 2021 | 668209.0 | 5312223.0 | 0.005              |
| 804127 | War Eagle      | 2021 | 668209.0 | 5312222.0 | 0.059              |
| 804128 | Grace South    | 2021 | 668174.0 | 5313093.0 | 0.177              |
| 804129 | Grace South    | 2021 | 668177.0 | 5313089.0 | 0.045              |
| 804130 | Grace South    | 2021 | 668179.0 | 5313087.0 | 1.300              |
| 804131 | Grace South    | 2021 | 668176.0 | 5313088.0 | 0.346              |
| 804132 | Grace South    | 2021 | 668180.0 | 5313088.0 | 0.952              |
| 804133 | Grace South    | 2021 | 668180.0 | 5313083.0 | 0.111              |
| 804151 | Grace South    | 2021 | 668211.0 | 5313093.0 | 0.514              |
| 804152 | Grace South    | 2021 | 668208.0 | 5313062.0 | 0.158              |
| 804153 | Nyman Vein     | 2021 | 668477.0 | 5313574.0 | 0.006              |
| 804161 | Eagle-Mariposa | 2022 | 668928.0 | 5314116.0 | 0.187              |
| 804162 | Eagle-Mariposa | 2022 | 668955.0 | 5314124.0 | 0.005              |
| 804163 | Eagle-Mariposa | 2022 | 668984.0 | 5314079.0 | 0.005              |
| 804164 | Eagle-Mariposa | 2022 | 669032.0 | 5314057.0 | 0.019              |
| 804165 | Eagle-Mariposa | 2022 | 669035.0 | 5314054.0 | 0.032              |
| 804166 | Eagle-Mariposa | 2022 | 669157.0 | 5314049.0 | 0.009              |
| 804167 | Eagle-Mariposa | 2022 | 669234.0 | 5314004.0 | 0.006              |
| 804168 | Eagle-Mariposa | 2022 | 669278.0 | 5314014.0 | 0.012              |
| 804169 | Eagle-Mariposa | 2022 | 669375.0 | 5313963.0 | 0.005              |
| 804170 | Eagle-Mariposa | 2022 | 669375.0 | 5313963.0 | 0.005              |
| 804171 | Eagle-Mariposa | 2022 | 669446.0 | 5313950.0 | 0.005              |
| 804172 | Eagle-Mariposa | 2022 | 669465.0 | 5313872.0 | 0.008              |
| 804173 | Eagle-Mariposa | 2022 | 669392.0 | 5313906.0 | 0.005              |
| 804174 | Eagle-Mariposa | 2022 | 669363.0 | 5313922.0 | 0.005              |
| 804176 | Eagle-Mariposa | 2022 | 669288.0 | 5313925.0 | 0.009              |
| 804177 | Eagle-Mariposa | 2022 | 669170.0 | 5313946.0 | 0.005              |
| 804178 | Eagle-Mariposa | 2022 | 669079.0 | 5313919.0 | 0.005              |
| 804179 | Eagle-Mariposa | 2022 | 669079.0 | 5313919.0 | 0.005              |
| 804181 | Eagle-Mariposa | 2022 | 668920.0 | 5314007.0 | 0.005              |
| 804182 | Eagle-Mariposa | 2022 | 668821.0 | 5313990.0 | 0.006              |
| 804183 | Eagle-Mariposa | 2022 | 668951.0 | 5313909.0 | 0.005              |
| 804184 | Eagle-Mariposa | 2022 | 669122.0 | 5313860.0 | 0.005              |
| 804185 | Eagle-Mariposa | 2022 | 669136.0 | 5313840.0 | 0.005              |
| 804186 | Eagle-Mariposa | 2022 | 669136.0 | 5313840.0 | 0.005              |
| 804187 | Eagle-Mariposa | 2022 | 669243.0 | 5313800.0 | 0.005              |

| Sample | Area           | Year | Easting  | Easting Northing FA |                 |  |
|--------|----------------|------|----------|---------------------|-----------------|--|
| 804188 | Eagle-Mariposa | 2022 | 669293.0 | 5313811.0 0.005     |                 |  |
| 804189 | Eagle-Mariposa | 2022 | 669372.0 | 5313784.0           | 0.006           |  |
| 804190 | Eagle-Mariposa | 2022 | 669372.0 | 5313784.0           | 0.008           |  |
| 804191 | Eagle-Mariposa | 2022 | 669480.0 | 5313748.0           | 0.005           |  |
| 804192 | Eagle-Mariposa | 2022 | 669631.0 | 5313594.0           | 0.005           |  |
| 804193 | Eagle-Mariposa | 2022 | 669550.0 | 5313662.0           | 0.005           |  |
| 804194 | Eagle-Mariposa | 2022 | 669301.0 | 5313682.0           | 0.008           |  |
| 804195 | Eagle-Mariposa | 2022 | 669301.0 | 5313682.0           | 0.005           |  |
| 804196 | Eagle-Mariposa | 2022 | 668952.0 | 5313787.0           | 0.022           |  |
| 804197 | Eagle-Mariposa | 2022 | 669077.0 | 5313660.0           | 0.006           |  |
| 804199 | Eagle-Mariposa | 2022 | 669175.0 | 5313629.0           | 0.005           |  |
| 804251 | Eagle-Mariposa | 2022 | 669439.0 | 5313549.0           | 0.006           |  |
| 804252 | Eagle-Mariposa | 2022 | 669487.0 | 5313570.0           | 0.021           |  |
| 804253 | Eagle-Mariposa | 2022 | 669545.0 | 5313528.0           | 0.009           |  |
| 804254 | Eagle-Mariposa | 2022 | 669601.0 | 5313524.0           | 0.131           |  |
| 804255 | Eagle-Mariposa | 2022 | 669135.0 | 5313589.0           | 0.005           |  |
| 804256 | Eagle-Mariposa | 2022 | 669156.0 | 5313535.0           | 0.005           |  |
| 804257 | Eagle-Mariposa | 2022 | 669156.0 | 5313535.0           | 0.041           |  |
| 804258 | Eagle-Mariposa | 2022 | 669130.0 | 5313518.0           | 0.099           |  |
| 804259 | Eagle-Mariposa | 2022 | 669715.0 | 5313413.0           | 0.015           |  |
| 804261 | Eagle-Mariposa | 2022 | 669715.0 | 5313413.0           | 0.005           |  |
| 804262 | Eagle-Mariposa | 2022 | 669816.0 | 5313275.0           | 0.005           |  |
| 804263 | Eagle-Mariposa | 2022 | 669816.0 | 5313275.0           | 5.0 0.006       |  |
| 804264 | Eagle-Mariposa | 2022 | 669541.0 | 5313355.0           | 0.009           |  |
| 804265 | Eagle-Mariposa | 2022 | 669305.0 | 5313374.0           | 0.005           |  |
| 804266 | Eagle-Mariposa | 2022 | 669917.0 | 5313124.0           | 0.005           |  |
| 804267 | Eagle-Mariposa | 2022 | 669692.0 | 5313189.0           | 0.005           |  |
| 804268 | Eagle-Mariposa | 2022 | 669373.0 | 5313245.0           | 0.006           |  |
| 804269 | Eagle-Mariposa | 2022 | 669275.0 | 5313290.0           | 0.005           |  |
| 804270 | Eagle-Mariposa | 2022 | 669146.0 | 5313325.0           | 0.008           |  |
| 804271 | Eagle-Mariposa | 2022 | 669110.0 | 5313329.0           | 0.006           |  |
| 804272 | Eagle-Mariposa | 2022 | 669062.0 | 5313372.0           | 0.005           |  |
| 804273 | Eagle-Mariposa | 2022 | 669020.0 | 5313380.0           | 0.005           |  |
| 804274 | Eagle-Mariposa | 2022 | 669425.0 | 5313619.0           | 0.008           |  |
| 804276 | Eagle-Mariposa | 2022 | 669425.0 | 5313619.0           | 0.016           |  |
| 804277 | Eagle-Mariposa | 2022 | 669425.0 | 5313619.0           | 0.005           |  |
| 804278 | Eagle-Mariposa | 2022 | 669425.0 | 5313619.0           | 0.005           |  |
| 804279 | Eagle-Mariposa | 2022 | 669442.0 | 5313614.0           | 5313614.0 0.039 |  |

| Sample | Area           | Year | Easting  | ng Northing Au<br>FA |               |  |
|--------|----------------|------|----------|----------------------|---------------|--|
| 804281 | Eagle-Mariposa | 2022 | 669442.0 | 5313614.0            | 0.006         |  |
| 804282 | Eagle-Mariposa | 2022 | 669452.0 | 5313609.0            | 0.005         |  |
| 804283 | Eagle-Mariposa | 2022 | 669457.0 | 5313615.0            | 0.229         |  |
| 804284 | Eagle-Mariposa | 2022 | 669485.0 | 5313446.0            | 0.067         |  |
| 804285 | Eagle-Mariposa | 2022 | 669452.0 | 5313609.0            | 0.008         |  |
| 804286 | Eagle-Mariposa | 2022 | 669436.0 | 5313598.0            | 0.005         |  |
| 804287 | Eagle-Mariposa | 2022 | 669409.0 | 5313690.0            | 0.005         |  |
| 804288 | Eagle-Mariposa | 2022 | 669409.0 | 5313690.0            | 0.009         |  |
| 804289 | Eagle-Mariposa | 2022 | 669428.0 | 5313704.0            | 0.424         |  |
| 804290 | Eagle-Mariposa | 2022 | 669430.0 | 5313617.0            | 0.005         |  |
| 804291 | Eagle-Mariposa | 2022 | 669421.0 | 5313611.0            | 0.006         |  |
| 804292 | Eagle-Mariposa | 2022 | 669381.0 | 5313905.0            | 0.007         |  |
| 804293 | Eagle-Mariposa | 2022 | 669381.0 | 5313905.0            | 0.005         |  |
| 804294 | Eagle-Mariposa | 2022 | 669394.0 | 5313904.0            | 0.010         |  |
| 804295 | Eagle-Mariposa | 2022 | 669395.0 | 5313906.0            | 0.052         |  |
| 804296 | Eagle-Mariposa | 2022 | 669406.0 | 5313909.0            | 0.005         |  |
| 804297 | Eagle-Mariposa | 2022 | 669387.0 | 5313874.0            | 0.011         |  |
| 804299 | Eagle-Mariposa | 2022 | 669387.0 | 5313874.0            | 0.026         |  |
| 804301 | Ward Lake      | 2022 | 667944.0 | 5314566.0            | 0.005         |  |
| 804302 | Ward Lake      | 2022 | 668065.0 | 5314827.0            | 0.022         |  |
| 804303 | Ward Lake      | 2022 | 668167.0 | 5314931.0            | 0.008         |  |
| 804304 | Ward Lake      | 2022 | 668232.0 | 5315051.0            | 0.006         |  |
| 804305 | Ward Lake      | 2022 | 668169.0 | 5315049.0            | 0.009         |  |
| 804306 | Ward Lake      | 2022 | 668156.0 | 5315050.0            | 0.005         |  |
| 804307 | Eagle-Mariposa | 2022 | 669409.0 | 5313856.0            | 0.077         |  |
| 804308 | Eagle-Mariposa | 2022 | 669409.0 | 5313856.0            | 0.026         |  |
| 804309 | Eagle-Mariposa | 2022 | 669409.0 | 5313856.0            | 0.037         |  |
| 804310 | Eagle-Mariposa | 2022 | 669334.0 | 5313888.0            | 0.008         |  |
| 804311 | Eagle-Mariposa | 2022 | 669374.0 | 5313844.0            | 0.005         |  |
| 804312 | Eagle-Mariposa | 2022 | 669374.0 | 5313844.0            | 0.006         |  |
| 804313 | Eagle-Mariposa | 2022 | 669374.0 | 5313844.0            | 0.010         |  |
| 804314 | Eagle-Mariposa | 2022 | 669316.0 | 5312826.0            | 0.005         |  |
| 804315 | Eagle-Mariposa | 2022 | 669316.0 | 5312826.0            | 0.005         |  |
| 804316 | Eagle-Mariposa | 2022 | 669310.0 | 5312821.0            | 0.005         |  |
| 804317 | Eagle-Mariposa | 2022 | 669446.0 | 5312872.0            | 0.005         |  |
| 804318 | Eagle-Mariposa | 2022 | 669446.0 | 5312872.0            | 0.005         |  |
| 804319 | Eagle-Mariposa | 2022 | 669472.0 | 5312884.0            | 0.029         |  |
| 804321 | Eagle-Mariposa | 2022 | 669625.0 | 5312885.0            | 12885.0 0.005 |  |

| Sample | Area           | Year | Easting Northing |           | Au (g/t)<br>FA GRA |  |
|--------|----------------|------|------------------|-----------|--------------------|--|
| 804322 | Eagle-Mariposa | 2022 | 669968.0         | 5313030.0 | 0.005              |  |
| 804323 | Eagle-Mariposa | 2022 | 669956.0         | 5313013.0 | 0.005              |  |
| 804324 | Eagle-Mariposa | 2022 | 669860.0         | 5313052.0 | 0.006              |  |
| 804326 | Eagle-Mariposa | 2022 | 669860.0         | 5313052.0 | 0.007              |  |
| 804327 | Eagle-Mariposa | 2022 | 669860.0         | 5313052.0 | 0.010              |  |
| 804328 | Eagle-Mariposa | 2022 | 669848.0         | 5313110.0 | 0.049              |  |
| 804329 | Eagle-Mariposa | 2022 | 669672.0         | 5312934.0 | 0.008              |  |
| 804330 | Eagle-Mariposa | 2022 | 669681.0         | 5312947.0 | 0.005              |  |
| 804331 | Eagle-Mariposa | 2022 | 669712.0         | 5312983.0 | 0.021              |  |
| 804332 | Eagle-Mariposa | 2022 | 669769.0         | 5313030.0 | 0.005              |  |
| 804333 | Eagle-Mariposa | 2022 | 669704.0         | 5313035.0 | 0.005              |  |
| 804334 | Eagle-Mariposa | 2022 | 669436.0         | 5312747.0 | 0.011              |  |
| 804335 | Eagle-Mariposa | 2022 | 669436.0         | 5312747.0 | 0.051              |  |
| 804336 | Eagle-Mariposa | 2022 | 669574.0         | 5312799.0 | 0.006              |  |
| 804337 | Eagle-Mariposa | 2022 | 669635.0         | 5313048.0 | 0.005              |  |
| 804338 | Eagle-Mariposa | 2022 | 669638.0         | 5313046.0 | 0.005              |  |

Note: Grab samples are selective by nature and are not necessarily representative of the mineralization hosted on the property.



Figure 9-1: Location of Grab Samples Collected by Red Pine from 2014 to 2022



Figure 9-2: Gold grade and location of Grab Samples Collected by Red Pine from 2014 to 2022

# 9.2 Geophysics

## 9.2.1 Ground Magnetic Surveying (December 2014 to January 2015)

Members of the Red Pine team conducted a ground magnetic survey of the Surluga Mine and surrounding area between December 3, 2014, and January 26, 2015. This was lead by, and the results interpreted by, an employee who is a career geophysicist.

The survey data was collected using a GEM Systems GSMP-35 Magnetometer, an optically pumped potassium magnetometer. The data was collected at 1 Hz and the system is reported to have an accuracy of ±0.05 nT (GEM Systems Inc., 2013). The magnetic diurnal was observed using a stationary GSM-19 magnetometer and was collected at 0.2 Hz. The corrected total magnetic field was calculated during nightly processing of the data.

Most survey lines were collected in an east-west orientation, perpendicular to the strike of the Jubilee shear zone. The survey line spacing was 50 m. An additional four lines were surveyed over the cut line path of the IP lines discussed in Item 9.2.2 – Spectral Induced Polarization and Resistivity Surveys. Additional lines oblique to the main east-west orientation were collected and included in the final database.

The corrected total magnetic intensity was examined in profile format and found to be of sufficient quality and delineates the western edge of the presently defined extent of the Surluga Mine. A few east-west trending magnetic lineaments, extending eastward from the Surluga Mine, are under-sampled with the present east-west ground magnetic line orientation; and therefore, are not as well delineated in the magnetic image. Since the delineation of these units was not the primary focus of this survey, this sampling is considered satisfactory.

The ground magnetic survey defined the strike of the Jubilee shear zone and is expressed as a magnetic low striking approximately 015°. There are areas of increased magnetization within the Jubilee shear plane that require further investigation in 3D through constrained inversion, as they may be related to the shear zone. Linear features oriented east-west are observed in the magnetic data.

The gridded results of the total magnetic intensity are displayed in Figure 9-3. A total of 69.7 line-km was collected in GPS mode. This represents a total area surveyed of 2.23 km<sup>2</sup>.



Figure 9-3: Total Magnetic Intensity of Wawa Ground Magnetic Survey

#### 9.2.2 Spectral Induced Polarization and Resistivity Surveys (2014)

Red Pine contracted Clearview to conduct Spectral Induced Polarization and Resistivity ("Spectral IP/Res") surveys on the Surluga Property. The work was completed December 12-16, 2014. The objective of the survey was to determine if the Spectral IP/Res results could be used to enhance drill targeting for gold mineralization (Mihelcic, 2014).

The survey array geometry was a Pole-Dipole "Combo" array, whereby the dipole spacing ("a") for n = 1-6 was a = 50 m, and for n= 7-8, a= 100 m. Voltage drops were measured for each dipole, and the transmitter operator measured the contact resistance and electric current passing through the current electrodes during each reading. This information was relayed to the receiver operator and entered in the receiver instrument to calculate apparent resistivity (Mihelcic, 2014).

A total of four lines were surveyed covering 3.08 line-km, with each line ranging from 600-950 m. Lines 1 - 3 were surveyed orthogonal to the Jubilee shear zone, and Line 4 was surveyed parallel to the strike of the Jubilee shear zone, approximately 430 m southeast of the top surface. Line 4 is considered the Base Line.

A final database was provided to Red Pine containing Spectral IP/Res parameters calculated during the survey: chargeability, DC resistivity and spectral tau calculated from Cole-Cole decay fitting. The data was collected using a Scintrex IPR-12 Multi-channel IP-Receiver, and the original dump files were provided to Ronacher McKenzie for review in Geosoft Oasis Montaj. Over a period of two seconds of on-off time, eleven samples were taken to map the chargeability decay per sample point. The decay curves were examined visually for each line and no abnormalities were noted. The samples are considered representative, and no factors are thought to have resulted in sample bias.

Three features were identified by Clearview in the Spectral IP/Res and are listed in Table 9-3. A location of the survey lines is found in Figure 9-4.

| Feature<br>ID | Easting | Northing | Elevation<br>(m) | Description                                                                                                                                                                                                                 |
|---------------|---------|----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A             | 668415  | 5317121  | 128.5            | Gold mineralization noted at this point; there is a 128.5 contact<br>of low resistivity to the west and high resistivity to1he east at<br>this point; Spectral Tau is relatively short compared to adjacent<br>areas online |
| В             | 668449  | 5316382  | 177.8            | Gold mineralization noted at this point; broad 177.8<br>chargeability response of 12mVN at 100m depth; Spectral Tau<br>is relatively short                                                                                  |
| С             | 668129  | 5316091  | 174.8            | Gold mineralization noted at this point; chargeability response<br>is broad 14mVN and located between low resistivity zones;<br>Spectral Tau is relatively short                                                            |

| Table 9-3: Features Identified from Spec | tral IP/Res Data by | Clearview Geophysics Inc | . Coordinates are |
|------------------------------------------|---------------------|--------------------------|-------------------|
| Listed in NAD83, UTM Zone 16N            |                     |                          |                   |



Figure 9-4: Red Pine Wawa Gold Project 2014 IP Survey Lines

## 9.2.3 Ground Magnetic Surveying (October 2015)

Red Pine contracted Clearview to complete a ground magnetic survey on the Project, in the Sunrise area (See Figure 7-2). The purpose of this work was to locate magnetic anomalies, as well as identify zones and trends to help guide gold exploration. The survey was completed in October 2015 (Mihelcic, 2015).

| Survey Parameter                          | Details                             |  |
|-------------------------------------------|-------------------------------------|--|
| Survey dates                              | October 18-19, 2015                 |  |
| Line-km                                   | 12.3 km                             |  |
| Line direction                            | 170°                                |  |
| Line spacing                              | 20m                                 |  |
| Terrain clearance                         | 2m                                  |  |
| Magnetic sensor                           | Scintrex ENVI Cesium magnetometer   |  |
| Magnetic sensor resolution                | 0.01 nT                             |  |
| Magnetic sensor sampling rate             | 10 Hz                               |  |
| Magnetic base station sensor              | GSM-19 v7.0 Overhauser magnetometer |  |
| Magnetic base station sensor resolution   | 0.01 nT                             |  |
| Magnetic base station                     | 1 Hz                                |  |
| Magnetic base station location (Long/Lat) | 84.7378W, 47.9714N                  |  |

Table 9-4: Parameters of the Ground Magnetic Survey (October 2015)

The corrected total magnetic intensity was examined in profile format and found to be of sufficient quality and representative of the magnetite distribution of the subsurface. No factors are noted to cause sample biases. The gridded results of the total magnetic intensity are displayed in Figure 9-6 (Item 9.2.4). A total of 12.3 line- km were collected in GPS mode. This represents a total area surveyed of 0.17 km<sup>2</sup>.

This survey represents a higher-resolution magnetic survey over the Sunrise area. The survey delineates several subtle ENE trending magnetic linear features, including one associated with the southeastern end of the Surluga grade shell.

## 9.2.4 Ground Horizontal Loop Electromagnetic Surveying (October 2015)

Red Pine contracted Clearview to complete a ground horizontal loop electromagnetic ("HLEM") on the Project. The survey was completed using an Apex MaxMin system and is often referred to as a "MaxMin" survey ("MaxMin"). The purpose of this work was to locate electromagnetic anomalies, as well as identifying zones and trends that help guide gold exploration. The survey was completed in October 2015 (Mihelcic, 2015).

Two cable separations were recorded: 50 m and 100 m. The coils were kept horizontal-parallel to each other. The receiver ("Rx") led the transmitter ("Tx") along survey fines and the slope difference between the Rx and Tx was adjusted using an inclinometer. The 110 Hz setting was used to 'null' the in-phase response of small adjustments to the Tx-Rx coil separation. Readings were recorded as the secondary field percentage of the primary transmitter field (Mihelcic, 2015). Survey specifications can be found in Table 9-5. Profile responses for the 100 m Tx-Rx separation and infill 50 m Tx-Rx separation are found in Figure 9-6.

The highest quadrature response profiles for the 100 m Tx-Rx separation were noted on the southern part of lines L1480E - L1600E. The in-phase responses were noted to be relatively weak and highly variable in the south part of L1540E - L1600E (Mihelcic, 2015).

Table 9-5: HLEM Survey Parameters

| Survey Parameter                           | Details                                                                                          |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|
| Survey dates                               | October 9-18, 2015                                                                               |
| Cable lengths                              | 50 m and 100 m                                                                                   |
| Line-km                                    | 50 m: 6.3 line-km, 100 m: 4.2 line-km                                                            |
| Area covered                               | 50 m: 0.112 km2, 100 m: 0.052 km2                                                                |
| Line direction                             | 170°                                                                                             |
| Line spacing                               | 20m                                                                                              |
| Station spacing - 50m cable separation     | Sm                                                                                               |
| Station spacing - 100m cable separation    | 12.5m                                                                                            |
| Coil orientation                           | Horizontal-parallel to each other                                                                |
| Slope Calculation                          | Inclinometer                                                                                     |
| Rx, Tx configuration                       | Rx in front, tx trailing                                                                         |
| System                                     | Apex MaxMin 1-10 EM System                                                                       |
| Frequencies recorded (Hz) - 50m separation | L1460E, L1400E, north of 130N on L1380N; 110, 220, 880,<br>1760, 3520, 7040, 14080, 28160, 56320 |
|                                            | All other lines: 110, 7040, 14080, 28160, 56320                                                  |
| Frequencies recorded (Hz) - 100m cable     | All lines: 110, 220, 880, 1760, 3520, 7040, 14080, 28160,<br>56320                               |
| Parameters measured                        | In-phase and quadrature components of secondary magnetic field, in % of primary field            |



Figure 9-5: Clearview Geophysics from 50 m Tx-Rx Separation HLEM OP 7040 Grid Data

Eleven anomalies were selected by ClearView from the 50 m Tx-Rx separation based on the in-phase and quadrature response and are listed in Table 9-6. They are displayed graphically in Figure 9-6.

Table 9-6: Interpreted Anomalies of 50 m Tx-Rx Separation Survey Selected by ClearView

| Anomaly<br>ID | Description                                                                                                                                                                                                                                                 |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| А             | Strong in-phase and quadrature responses, especially on L11SOE and L'1200E; width of anomaly is less than 25 m suggesting a near or at surface source.                                                                                                      |  |
| В             | Centre of 25 m wide quadrature and alternating in-phase response; anomaly extends to outcrops where samples were taken.                                                                                                                                     |  |
| С             | Centre of 25 m wide quadrature and alternating in-phase response; anomaly extends to outcrops where samples were taken.                                                                                                                                     |  |
| D             | Located in northeast corner of grid, best defined on 14 kHz data. Response is less than 15 m wide indicating weak near or at surface source.                                                                                                                |  |
| E             | Located in northeast corner of grid, best defined on 14 kHz data. Response is less than 15 m wide indicating weak near or at surface source.                                                                                                                |  |
| F             | Located in northeast corner of grid, best defined on 14 kHz data. Response is less than 15 m wid indicating weak near or at surface source.                                                                                                                 |  |
| G             | Anomaly noted to coincide with elevated gold assays, consist of very weak (less than 3%) 56 kHz<br>quadrature anomalies over a width of approximately 50 m. Anomaly likely the result of subtle<br>variations from the bedrock.                             |  |
| н             | Anomaly noted to coincide with elevated gold assays, consist of very weak (less than 3%) 56 kHz quadrature anomalies over a width of approximately 50 m. Anomaly likely the result of subtle variations from the bedrock.                                   |  |
| I             | Similar, and immediately south to anomalies G and H.                                                                                                                                                                                                        |  |
| J             | Located at south-east corner of grid, one of the highest amplitude anomalies detected marks the boundary between positive and negative quadrature response. This boundary does not correlate with the edge of the swamp; postulated to be a bedrock source. |  |
| К             | Located at south-east comer of grid, one of the highest amplitude anomalies detected. Although the anomaly axis is in a flat overburden-filled area, the source could result from a bedrock fault zone.                                                     |  |



Figure 9-6: Anomalies Selected by Clearview Geophysics from 50 m Tx-Rx Separation HLEM Data (Total Magnetic Intensity Data [Oct 2015] Underlain

### 9.2.5 Helicopter-borne Gradient Magnetic Survey (Feb 2015)

Red Pine contracted Scott Hogg & associates Ltd. ("Scott Hogg") to conduct a helicopter-towed gradient magnetic survey on the Project. The survey was completed from February 12, 2015, to February 17, 2015. A total of 928 line-km of data were collected (Munro, 2015). The survey covered an area of 37 km<sup>2</sup>. The survey parameters are presented in Table 9-7.

| Survey dates                           | February 12 - 17, 2015                                                  |  |
|----------------------------------------|-------------------------------------------------------------------------|--|
| Line-km                                | 928 line-km                                                             |  |
| Area                                   | 37 km <sup>2</sup>                                                      |  |
| Line direction                         | 090°                                                                    |  |
| line spacing                           | 50 m                                                                    |  |
| Tie line direction                     | 000°                                                                    |  |
| Tie line spacing 500 m                 |                                                                         |  |
| Terrain clearance                      | 30 m                                                                    |  |
| Magnetic sensor                        | Heli-GT (contains 4 Scintrex CS3 cesium sensors in an orthogonal array) |  |
| Magnetic sensor separation             | 3 m within the array                                                    |  |
| magnetic sensor resolution             | 0.005 nT                                                                |  |
| Magnetic sensor sampling rate          | 10 Hz                                                                   |  |
| Fluxgate magnetometer                  | Billingsley TFM100G2 3-axis                                             |  |
| Fluxgate magnetometer sampling<br>rate | 10 Hz                                                                   |  |
| Radar altimeter                        | Terra TRA 3500 / TR 140                                                 |  |
| Radar altimeter sampling rate          | 10 Hz                                                                   |  |
| Additional data recorded               | VLF, GPS                                                                |  |
| Magnetic base station                  | GEM SSM19TW proton magnetometer                                         |  |
| Alternate diurnal recording            | Natural Resources Canada - Ottawa                                       |  |

 Table 9-7: Helicopter-Borne Gradient Magnetic Survey Parameters

It was noted that there were times throughout surveying that the magnetic base station operated by Scott Hogg was unable to record due to cold weather conditions. During this time, diurnal magnetic data recorded by Natural Resources Canada in Ottawa was reviewed for determination of magnetic storms during surveying (Munro, 2015). Scott Hogg confirmed that the base station channels were used to monitor diurnal activity, but the diurnal correction occurs during the tie-line levelling phase. It is industry-practice to employ at least one base magnetometer at a survey site to monitor diurnal activity. The diurnal activity recorded by Natural Resources Canada does not suggest any abnormal solar storm occurring, but the lack of this on-site base station magnetometer could introduce bias in the sampling of the magnetic data. Red Pine was made aware of the base magnetometer failure and elected to continue with surveying.

The Scott Hogg Heli-GT system consists of a towed bird that contains all the geophysical sensors as well as altimeter and GPS antennae (Munro, 2015). The system contains four magnetometers and allows for calculation of three magnetic gradients G1, G2, and G3, measured from the nose sensor to each of the radial sensors (Munro, 2015). The sensor in the bird's nose ("Mag4") is used as the principal total field profile. A minor lag is applied to the Mag4 sensor to align the data with the GPS antennae array (Munro, 2015).

The pitch, roll, and yaw of the bird are recorded by Scott Hogg and mathematically used to rotate the measured gradients to G-north, G-east and G-down, representing the XYZ orthogonal components of the magnetic field. The GPS altitude data was applied to the lagged magnetic data to produce an altitude correction. This altitude-corrected data underwent tie-line levelling and final micro-levelling (Munro, 2015).

Scott Hogg used proprietary gradient tensor software program GT-Grid to produce a total magnetic field grid from the recorded total magnetic field sensor (Mag4) and the recorded gradients. The data was also pole-reduced for the Project using a Fast Fourier Transform ("FFT") filter. An FFT filter was also applied to the data to produce a first vertical derivative grid ("CVG"), calculated from the pole-reduced total field grid, as can be seen in Figure 9-7. A half-cosine roll-off filter was included with the vertical derivative operator to reduce short-wavelength noise. The full wavelength of the noise filter was 30 m (Munro, 2015). A digital terrain model ("DTM") was calculated by subtracting the radar altimeter data from the GPS altitude, and was corrected by micro- levelling (Munro, 2015).



Figure 9-7: Grid of Pole-Reduced Calculated Vertical Derivative of Total Magnetic Intensity

#### 9.2.6 mT Survey

Red Pine engaged Empulse Geophysics Ltd. To conduct a transient magnetotelluric (mT) survey of the Project. The mT survey is used to infer the earth's subsurface electrical conductivity from measurements of the earth's natural geomagnetic and geoelectric field variations. The earth's electrical structure at depth may be estimated from surface measurements of naturally occurring fluctuations in the earth's geomagnetic field along with electric field fluctuations induced within the earth by the former.

The survey was collected using a SFERIC Transient AMT system in which 137 stations at approximately 300 m spacing was collected on 19 parallel lines enclosing an area of approximately 2.5 km E-W by 5.5 km N-S (Figure 9-8). The mT results show that the Project lies east of a deep (1.5 km or greater), major regional structure which may be hydraulically connected to the Jubilee Lake area (Figure 9-3). Further, between 1,500 m and 2,000 m, there is evidence of several deep "roots" or resistivity lows that exist below shallower anomalies in the upper several hundred metres. The location of these resistivity low anomalies exists north of Minto Lake, near the old Mariposa mine. In addition, there are strong resistivity lows in the upper several hundred metres at the west end of the northern-most lines, under Lake Wawa and at the end of line three (L3) at shallow depths (less than (<) 200 m) where a conducted airborne EM survey has been completed in the past and has responded strongly to the feature.

Data quality is fair to good for this dataset with dead-band effects generally smaller than expected. Due to thick bush and a dense root network on the forest floor, induction coil installations were generally difficult and remained quite susceptible to motion noise, especially the vertical coil. As a result, the impedance tensor and tipper, typically wind noise, dominated below approximately 20 hertz (Hz).



Figure 9-8: Wawa Gold Project Transient AMT Grid

#### 9.2.7 Inversion of 2011 VTEM Data

In 2017, Red Pine contracted AARHUSGEO to complete an inversion with Cole-Cole parameters of the VTEM survey data flown by Augustine Ventures in 2011. The purpose of the project was to recover improved electrical resistivities by means of Cole-Cole modelling to maximum possible depths for VTEM system in current geology. SCI inversion was effective in delineating the chargeable areas, which result in strong IP effects in VTEM data. SCI inversion misfit normalized by the standard deviation is shown in Figure 9-9.

AARHUSGEO concluded, there is no particular correlation between electrical conductivity and gold content. The Surluga deposit has a strong conductive signature, in cases with Jubilee, Minto, Deep Lake mine and Van Sickle, there is some conductive response, but to a small degree, in other cases (e.g., Hornblende pit, Mariposa and Cooper), there is no conductive response. From the magnetic 3D modelling carried out for the area surrounding the Surluga deposit, the conductive target to the west of Surluga deposit shares similar magnetic signature. The latter could be attributed to presence of non-magnetic Jubilee shear zone in case with Surluga deposit and similar processes, which led to destruction of magnetic minerals in case with the adjacent anomaly, subject to advanced modelling (Kaminski et al, 2017).



Figure 9-9: SCI VTEM Data Inversion Misfit Grid

#### 9.2.8 Gravity Survey (2019)

Red Pine Exploration contracted Abitibi Geophysics to conduct a high-resolution ground gravity survey, which was completed between March 19, and March 29, 2019. A Scintrex CG-6 and a CG-5u AutoGrav gravity meter were used. These gravity meters use quartz sensor technology and offer fast, reliable, and precise gravity measurements which includes an array of mapping and post processing functionality. The software used was SCTutil and USB Stick Interface for data transfer to a PC, and Gravity and Terrain Correction (Oasis Montaj ver 9.5.2 module from Geosoft) for all remaining gravity processing. Real-time Kinematic (RTK) GPS surveying was done, with an expected accuracy better than 5 cm in elevation and horizontal positioning. A Leica 1200 base station and Leica Viva GS15 rover were used in tandem with LEICA Geo-Office 8.2.

The gravity survey was undertaken to detect abandoned underground workings of the Jubilee Mine, to delineate prospective targets for gold mineralization and to trace the southern extension of the Jubilee Stock. The survey (L 1+00E, L 2+00E and L 3+00E) carried out around the Jubilee Lake, was to detect abandoned underground workings of the Jubilee Mine, while the purpose of the two NW-SE long traverses (L 4+00N and L 5+00N), 2.7 km apart, was to delineate prospective targets for gold mineralization. Along the long traverses, 143 gravity readings divided into two NW-SE profiles and spaced every 50 m were measured. The gravity data was reduced to the sea-level datum by standard reductions (Tide, drift, height, temperature, pressure, tilt, free air, buguer and terrain corrections) using a bouguer density of 2.75 g/cm<sup>3</sup> to reflect the diorite to granodiorite rocks that constitute the Jubilee Stock.

The gravity method mapped the Jubilee Stock by negative residual responses and confirmed the extension of the Jubilee Stock to the SW of where historical mapping defined its boundary (Figure 9-10). The direct association between the zone(s) of gold mineralization identified on the Wawa Gold Project and the Jubilee Stock indicate its importance in controlling the deposition of gold. This southerly extension of the Jubilee Stock identifies new areas for gold exploration on the property. The gravity data supports our interpretation of the extension of the Wawa Gold Corridor much further to the south and extending the potential mineralization strike length to over 6 km.



Figure 9-10: Residual Anomaly Profiles Overlaid on the Geological Map of the Wawa Gold Property

### 9.2.9 Cross-hole IP/Resistivity Survey (2020)

During the spring of 2020, Red Pine contracted Clearview Geophysics Inc. to carry a out cross-hole IP/Resistivity survey on the Surluga Deposit. The purpose of the work was to map trends and zones in 3D to assist with planning follow-up exploration drilling. Table 9-8 summarizes the parameters of the cross-hole on IP/resistivity survey. Nine drill hole pairs were logged: SD-18-241 and SD-18-243A, SD-18-241 and SD-15-20, SD-18-241 and SD-15-21, SD-18-243A and SD-18-255, SD-18-250 and SD-20-289, SD-18-255 and SD-20-285A, SD-18-255 and SD-20-287, SD-20-287, SD-20-287, SD-20-289, SD-20-289, and SD-20-285A (Figure 9-11).

| Survey Parameter                      | Details                                                                                                                                 |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Survey dates                          | May 18-26, 2020                                                                                                                         |  |
| Svotom                                | Scintrex IPR12 Rx,                                                                                                                      |  |
| System                                | Walcer 10 kW Tx                                                                                                                         |  |
| Reading Location - P1                 | Fixed several metres from anchor hole collar                                                                                            |  |
| Reading Location - P2                 | Down anchor hole                                                                                                                        |  |
| Reading Location - P3                 | Down paired-hole                                                                                                                        |  |
| Reading Time                          | Cyclical DC pulses of 2 seconds on positive<br>followed by 2 seconds off and then 2<br>seconds on negative followed by 2 seconds<br>off |  |
| Reading Intervals -<br>Anchor-hole P2 | Typically @ 50m & 100m intervals                                                                                                        |  |
| Reading Intervals -<br>Paired-hole P3 | Typically @ 5m, 10 m, 20 m & 30m intervals                                                                                              |  |
| Transmitter Electrodes                | C1: 668135 mE / 5316903 mN                                                                                                              |  |
|                                       | C2: 668737 mE / 5315007 mN                                                                                                              |  |
| Cross-hole pairs                      | Nine (9)                                                                                                                                |  |

| Table 9-8: Parameters of the Cross-hole IP/Resistivity Surv |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

The cross-hole IP/Resistivity survey consisted of injecting electric current into the ground through transmitter electrodes located 2 km apart. The transmitter current averaged 2,050 milliampere. The anchor drill hole is the drill hole at which the receiver operator was positioned. The P1 reference receiver electrode was positioned several metres from the collar of the anchor drill hole. The P2 receiver electrode was used in the anchor drill hole and was generally moved at 50-m or 100-m increments. The P3 receiver electrode was used in the paired cross-hole and generally moved at 5-m, 10-m, 20-m, or 30-m intervals. For each electrode positioned in the anchor drill hole, the complete suite of equally spaced readings was taken at the paired hole. Two dipoles were recorded for each reading. Dipole 1 consisted of P1-P2, and Dipole 2 consisted of P2-P3. The receiver was set to synchronize to the transmitter pulse for Dipole 1. Dipole 1 is a quality control dipole used to remotely monitor the transmitter current and to ensure the timing of the receiver pulse is consistent for all readings.

The cross-hole survey identified variations that could indicate cross-cutting trends and structures, such as folds. Highest priority for follow-up should be at areas with weak to strong chargeability high responses.


Figure 9-11: Clearview Geophysics Inc. Cross-Hole IP Collar Locations

## 9.3 Channel Sampling 2015 to 2022

During the summers of 2015 to 2021, Red Pine personnel carried out mechanized stripping and channel sampling of exposed outcrops to define the continuity and distribution of gold mineralization in the exposed geological structures. A total of 1,570 channel samples were collected over 519 channels from 63 different areas. Table 9-9 lists the channels, their length and orientation. The main objective of the trenching program was to characterize the surface geology and mineralization of historical showings and their host geological structures into the main mineralized structures of the Wawa Gold Project. These targeted showings and geological structures include: Root Vein, Grace Shear Zone, Cooper-Ganley structure, Jubilee Shear Zone (JSZ) and its extension south of the Parkhill Fault, Hornblende Shear zone (HBSZ), William Shear Zone (WSZ), Algoma, Minto Mine Shear Zone, Parkhill #4 Shear Zone, Minto B, Sunrise-Mickelson, Van Sickle, Parkhill, and prospective structures identified from traverses, mapping and geophysical surveys. Trenching and channel sampling was also completed in areas where limited surface work had been done to date, but that exhibited similar geophysical signatures as known mineralization.

Channel samples were cut using a channel saw and their length (true width cannot be calculated due to surface irregularities along the series of channel samples) and azimuth were recorded. The samples were collected in approximately 1 m intervals (intervals range from 0.1 m to 1.5 m) and their location recorded using a differential GPS. The assay highlights of channel samples with grades above 0.5 Au g/t are listed in Table 9-10. Figure 9-12 shows the locations of all areas where stripping and channel sampling was completed. Figure 9-13 shows the area of the highlighted channel sampling assay results.

| Trench ID    | Year | Trench Area | x      | Y       | z   | Length<br>(m)* | Az  |
|--------------|------|-------------|--------|---------|-----|----------------|-----|
| 15WG-AC-009  | 2015 | Root Vein   | 668159 | 5315862 | 348 | 6              | 326 |
| 15WG-AC-010  | 2015 | Root Vein   | 668154 | 5315864 | 349 | 4              | 309 |
| 15WG-AC-011  | 2015 | Root Vein   | 668215 | 5315948 | 349 | 10             | 315 |
| 15WG-AC-012  | 2015 | Minto C     | 668251 | 5315988 | 352 | 11.5           | 312 |
| 15WG-AC-014  | 2015 | Minto C     | 668226 | 5315952 | 349 | 1.55           | 350 |
| 15WG-AC-018  | 2015 | Minto C     | 669020 | 5314854 | 347 | 1.7            | 338 |
| 15WG-AC-019  | 2015 | Minto C     | 669033 | 5314876 | 346 | 3              | 347 |
| 15WG-AC-020  | 2015 | Minto B     | 669035 | 5314877 | 346 | 0.6            | 347 |
| 15WG-AC-021  | 2015 | Minto B     | 669046 | 5314879 | 345 | 1              | 43  |
| 15WG-AC-022  | 2015 | Minto B     | 669054 | 5314880 | 343 | 3              | 358 |
| 15WG-AC-023A | 2015 | Root Vein   | 669086 | 5314882 | 341 | 0.25           | 333 |
| 15WG-AC-023B | 2015 | Van Sickle  | 669086 | 5314882 | 341 | 0.35           | 333 |
| 15WG-AC-023C | 2015 | Van Sickle  | 669086 | 5314882 | 341 | 0.45           | 333 |
| 15WG-AC-025  | 2015 | Van Sickle  | 668764 | 5314700 | 339 | 4              | 162 |
| 15WG-AC-026  | 2015 | Van Sickle  | 668943 | 5315696 | 352 | 1.5            | 17  |
| 15WG-AC-031  | 2015 | Van Sickle  | 668904 | 5315687 | 353 | 2.25           | 332 |
| 15WG-AC-032  | 2015 | Van Sickle  | 668903 | 5315695 | 354 | 2.35           | 337 |
| 15WG-AC-034A | 2015 | Van Sickle  | 668896 | 5315692 | 354 | 0.35           | 20  |
| 15WG-AC-034B | 2015 | Van Sickle  | 668896 | 5315692 | 354 | 0.2            | 20  |
| 15WG-AC-035  | 2015 | Parkhill    | 668913 | 5315683 | 352 | 2.75           | 359 |
| 15WG-AC-121  | 2015 | Sunrise     | 668796 | 5315832 | 367 | 8              | 326 |
| 15WG-AC-122  | 2015 | Sunrise     | 668787 | 5315834 | 367 | 2              | 314 |
| 15WG-AC-123  | 2015 | Sunrise     | 668756 | 5315817 | 367 | 5.75           | 321 |
| 15WG-AC-124  | 2015 | Sunrise     | 668753 | 5315821 | 367 | 3              | 229 |
| 15WG-AC-125A | 2015 | Sunrise     | 668721 | 5315745 | 371 | 3.15           | 329 |
| 15WG-AC-125B | 2015 | Sunrise     | 668721 | 5315745 | 371 | 0.75           | 329 |
| 15WG-JFM-017 | 2015 | Sunrise     | 668758 | 5318439 | 301 | 0.95           | 329 |
| 15WG-AC-001  | 2015 | Sunrise     | 668803 | 5318479 | 297 | 4.4            | 150 |
| 15WG-AC-001A | 2015 | Sunrise     | 668803 | 5318479 | 297 | 3.5            | 240 |
| 15WG-AC-004  | 2015 | Sunrise     | 668766 | 5318449 | 300 | 1.5            | 148 |
| 15WG-AC-006  | 2015 | Sunrise     | 668212 | 5315821 | 350 | 4.82           | 332 |
| 15WG-AC-008  | 2015 | Sunrise     | 668163 | 5315777 | 348 | 6              | 326 |
| Mariposa1    | 2015 | Mariposa    | 668799 | 5314286 | 358 | 4              | 180 |
| Mariposa2    | 2015 | Mariposa    | 668806 | 5314278 | 357 | 3              | 360 |
| Mickelson1   | 2015 | Mickelson   | 668931 | 5315680 | 350 | 4.5            | 177 |
| Mickelson2   | 2015 | Mickelson   | 668930 | 5315683 | 350 | 0.35           | 177 |
| Mickelson3   | 2015 | Mickelson   | 668885 | 5315690 | 354 | 2.75           | 177 |

### Table 9-9: Location, Length, and Orientation of Channels Collected during the 2015 to 2022 Programs

| Trench ID  | Year | Trench Area     | x      | Y       | Z   | Length<br>(m)* | Az    |
|------------|------|-----------------|--------|---------|-----|----------------|-------|
| Mickelson4 | 2015 | Mickelson       | 668884 | 5315690 | 354 | 0.55           | 177   |
| Mickelson5 | 2015 | Mickelson       | 668883 | 5315690 | 354 | 1.6            | 177   |
| Mickelson6 | 2015 | Mickelson       | 668882 | 5315691 | 355 | 1.2            | 177   |
| Mickelson7 | 2015 | Mickelson       | 668881 | 5315692 | 353 | 0.85           | 177   |
| TR-16-10A  | 2016 | Jubilee seacans | 668137 | 5316902 | 354 | 4              | 97.7  |
| TR-16-10B  | 2016 | Jubilee seacans | 668140 | 5316902 | 355 | 1              | 270   |
| TR-16-10C  | 2016 | Jubilee seacans | 668140 | 5316902 | 355 | 1              | 0     |
| TR-16-10D  | 2016 | Jubilee seacans | 668137 | 5316903 | 354 | 4              | 292.1 |
| TR-16-1A   | 2016 | JSZ             | 668104 | 5317428 | 338 | 1              | 151.8 |
| TR-16-1B   | 2016 | JSZ             | 668105 | 5317429 | 338 | 6              | 146.1 |
| TR-16-1C   | 2016 | JSZ             | 668108 | 5317424 | 340 | 11             | 153.3 |
| TR-16-1D   | 2016 | JSZ             | 668112 | 5317421 | 340 | 1              | 239.2 |
| TR-16-1E   | 2016 | JSZ             | 668114 | 5317415 | 337 | 1              | 188.5 |
| TR-16-1F   | 2016 | JSZ             | 668114 | 5317414 | 337 | 1              | 184.8 |
| TR-16-1G   | 2016 | JSZ             | 668115 | 5317422 | 338 | 3              | 161.4 |
| TR-16-1H   | 2016 | JSZ             | 668117 | 5317419 | 337 | 2              | 159.6 |
| TR-16-1I   | 2016 | JSZ             | 668116 | 5317412 | 340 | 3.6            | 153.3 |
| TR-16-1J   | 2016 | JSZ             | 668117 | 5317408 | 337 | 2              | 146.1 |
| TR-16-1K   | 2016 | JSZ             | 668131 | 5317389 | 337 | 4              | 116.4 |
| TR-16-1L   | 2016 | JSZ             | 668133 | 5317388 | 340 | 1              | 129.1 |
| TR-16-1M   | 2016 | JSZ             | 668134 | 5317386 | 341 | 1              | 126.7 |
| TR-16-1N   | 2016 | JSZ             | 668134 | 5317384 | 341 | 1              | 106.6 |
| TR-16-10   | 2016 | JSZ             | 668134 | 5317385 | 341 | 6              | 141.2 |
| TR-16-1P   | 2016 | JSZ             | 668144 | 5317375 | 343 | 1.8            | 153.3 |
| TR-16-1Q   | 2016 | JSZ             | 668144 | 5317373 | 344 | 2              | 141.9 |
| TR-16-1R   | 2016 | JSZ             | 668145 | 5317371 | 344 | 1              | 120.8 |
| TR-16-1S   | 2016 | JSZ             | 668145 | 5317370 | 344 | 4              | 136.8 |
| TR-16-1T   | 2016 | JSZ             | 668161 | 5317356 | 344 | 2.8            | 146.1 |
| TR-16-1U   | 2016 | JSZ             | 668162 | 5317355 | 344 | 1              | 33.9  |
| TR-16-1V   | 2016 | JSZ             | 668162 | 5317354 | 344 | 2              | 155.9 |
| TR-16-1W   | 2016 | JSZ             | 668166 | 5317352 | 348 | 1              | 139.2 |
| TR-16-1X   | 2016 | JSZ             | 668167 | 5317351 | 344 | 9              | 153.3 |
| TR-16-1Y   | 2016 | JSZ             | 668172 | 5317345 | 349 | 8              | 114.1 |
| TR-16-1Z   | 2016 | JSZ             | 668179 | 5317338 | 347 | 8              | 141.9 |
| TR-16-1AA  | 2016 | JSZ             | 668185 | 5317333 | 347 | 3              | 159   |
| TR-16-1BB  | 2016 | JSZ             | 668186 | 5317330 | 347 | 1              | 196.1 |
| TR-16-1CC  | 2016 | JSZ             | 668184 | 5317329 | 347 | 3              | 146.1 |
| TR-16-1DD  | 2016 | JSZ             | 668186 | 5317327 | 346 | 1              | 173.6 |

| Trench ID | Year | Trench Area   | x      | Y       | Z   | Length<br>(m)* | Az    |
|-----------|------|---------------|--------|---------|-----|----------------|-------|
| TR-16-2A  | 2016 | HB vein       | 668050 | 5317469 | 334 | 6              | 143   |
| TR-16-2B  | 2016 | HB vein       | 668053 | 5317465 | 337 | 1              | 146   |
| TR-16-2C  | 2016 | HB vein       | 668061 | 5317481 | 332 | 1              | 124   |
| TR-16-2D  | 2016 | HB vein       | 668063 | 5317480 | 333 | 2              | 130   |
| TR-16-2E  | 2016 | HB vein       | 668059 | 5317479 | 332 | 2              | 127   |
| TR-16-2F  | 2016 | HB vein       | 668061 | 5317478 | 334 | 1.9            | 146   |
| TR-16-2G  | 2016 | HB vein       | 668061 | 5317476 | 335 | 3.4            | 116   |
| TR-16-2H  | 2016 | HB vein       | 668063 | 5317474 | 337 | 7              | 137   |
| TR-16-2I  | 2016 | HB vein       | 668066 | 5317469 | 340 | 2              | 170   |
| TR-16-2J  | 2016 | HB vein       | 668067 | 5317467 | 340 | 1              | 146   |
| TR-16-2K  | 2016 | HB vein       | 668071 | 5317463 | 340 | 5              | 138   |
| TR-16-2L  | 2016 | HB vein       | 668075 | 5317460 | 341 | 1              | 143   |
| TR-16-2M  | 2016 | HB vein       | 668076 | 5317459 | 341 | 3              | 138   |
| TR-16-2N  | 2016 | HB vein       | 668080 | 5317455 | 340 | 8              | 132   |
| TR-16-20  | 2016 | HB vein       | 668092 | 5317449 | 344 | 4              | 165   |
| TR-16-3A  | 2016 | Jubilee South | 667720 | 5315769 | 306 | 11             | 90    |
| TR-16-3B  | 2016 | Jubilee South | 667723 | 5315768 | 307 | 3              | 102.9 |
| TR-16-3C  | 2016 | Jubilee South | 667730 | 5315771 | 309 | 7              | 90    |
| TR-16-4A  | 2016 | Williams      | 668085 | 5317233 | 347 | 18             | 96.5  |
| TR-16-4B  | 2016 | Williams      | 668087 | 5317234 | 347 | 3              | 99.4  |
| TR-16-4C  | 2016 | Williams      | 668090 | 5317233 | 348 | 5              | 0     |
| TR-16-4D  | 2016 | Williams      | 668092 | 5317236 | 348 | 1              | 0     |
| TR-16-4E  | 2016 | Williams      | 668094 | 5317229 | 347 | 14.5           | 0     |
| TR-16-4F  | 2016 | Williams      | 668098 | 5317234 | 348 | 2.5            | 14.1  |
| TR-16-4G  | 2016 | Williams      | 668099 | 5317238 | 348 | 1              | 90    |
| TR-16-4H  | 2016 | Williams      | 668101 | 5317234 | 348 | 2.5            | 12.6  |
| TR-16-5A  | 2016 | North trench  | 668196 | 5317507 | 334 | 1.6            | 156   |
| TR-16-5B  | 2016 | North trench  | 668195 | 5317507 | 334 | 13             | 137   |
| TR-16-6A  | 2016 | Minto A       | 667918 | 5315860 | 319 | 7              | 45.2  |
| TR-16-6B  | 2016 | Minto A       | 667922 | 5315866 | 320 | 13             | 56.5  |
| TR-16-6C  | 2016 | Minto A       | 667932 | 5315873 | 322 | 1              | 318.2 |
| TR-16-6D  | 2016 | Minto A       | 667932 | 5315874 | 322 | 23             | 65.9  |
| TR-16-6E  | 2016 | Minto A       | 667949 | 5315885 | 319 | 3              | 57.5  |
| TR-16-6F  | 2016 | Minto A       | 667953 | 5315886 | 318 | 4              | 90    |
| TR-16-6G  | 2016 | Minto A       | 667955 | 5315886 | 318 | 1              | 0     |
| TR-16-6H  | 2016 | Minto A       | 667951 | 5315883 | 319 | 3              | 67    |
| TR-16-6I  | 2016 | Minto A       | 667965 | 5315894 | 318 | 2              | 53.3  |
| TR-16-6J  | 2016 | Minto A       | 667967 | 5315895 | 318 | 11             | 45.2  |

| Trench ID | Year | Trench Area   | x      | Y       | Z   | Length<br>(m)* | Az    |
|-----------|------|---------------|--------|---------|-----|----------------|-------|
| TR-16-6K  | 2016 | Minto A       | 667977 | 5315900 | 321 | 2              | 59.2  |
| TR-16-6L  | 2016 | Minto A       | 667978 | 5315901 | 320 | 1              | 296.4 |
| TR-16-6M  | 2016 | Minto A       | 667980 | 5315901 | 320 | 10             | 65.9  |
| TR-16-7A  | 2016 | Airstrip      | 667513 | 5315508 | 307 | 1              | 309.6 |
| TR-16-7B  | 2016 | Airstrip      | 667511 | 5315510 | 307 | 7              | 306.7 |
| TR-16-7C  | 2016 | Airstrip      | 667499 | 5315520 | 304 | 2              | 303.5 |
| TR-16-7D  | 2016 | Airstrip      | 667497 | 5315520 | 304 | 1              | 314.8 |
| TR-16-7E  | 2016 | Airstrip      | 667497 | 5315521 | 305 | 9              | 321.9 |
| TR-16-7F  | 2016 | Airstrip      | 667486 | 5315529 | 307 | 1              | 67    |
| TR-16-7G  | 2016 | Airstrip      | 667487 | 5315531 | 307 | 1              | 73.4  |
| TR-16-7H  | 2016 | Airstrip      | 667483 | 5315535 | 306 | 1              | 335.9 |
| TR-16-7I  | 2016 | Airstrip      | 667482 | 5315534 | 306 | 4              | 333.3 |
| TR-16-7J  | 2016 | Airstrip      | 667477 | 5315536 | 304 | 1              | 338.1 |
| TR-16-7K  | 2016 | Airstrip      | 667455 | 5315553 | 303 | 1              | 281.2 |
| TR-16-7L  | 2016 | Airstrip      | 667451 | 5315557 | 304 | 1              | 0     |
| TR-16-7M  | 2016 | Airstrip      | 667450 | 5315560 | 305 | 1              | 228.2 |
| TR-16-7N  | 2016 | Airstrip      | 667446 | 5315557 | 305 | 1              | 335.9 |
| TR-16-70  | 2016 | Airstrip      | 667452 | 5315556 | 304 | 2              | 0     |
| TR-16-7P  | 2016 | Airstrip      | 667450 | 5315557 | 304 | 5              | 300.8 |
| TR-16-7Q  | 2016 | Airstrip      | 667444 | 5315562 | 303 | 1              | 0     |
| TR-16-7R  | 2016 | Airstrip      | 667442 | 5315561 | 303 | 2              | 314.8 |
| TR-16-7S  | 2016 | Airstrip      | 667440 | 5315562 | 303 | 4              | 330.1 |
| TR16-8A   | 2016 | Minto B       | 668257 | 5315960 | 319 | 12             | 298.4 |
| TR16-8B   | 2016 | Minto B       | 668251 | 5315964 | 316 | 2              | 290.4 |
| TR16-8C   | 2016 | Minto B       | 668245 | 5315966 | 314 | 11             | 309.6 |
| TR16-8D   | 2016 | Minto B       | 668236 | 5315971 | 315 | 1              | 318.2 |
| TR16-8E   | 2016 | Minto B       | 668236 | 5315972 | 315 | 2              | 304.5 |
| TR16-8F   | 2016 | Minto B       | 668234 | 5315973 | 316 | 4              | 309.6 |
| TR16-8H   | 2016 | Minto B       | 668231 | 5315975 | 316 | 4              | 318.2 |
| TR16-8G   | 2016 | Minto B       | 668230 | 5315975 | 316 | 1              | 306.7 |
| TR16-11A  | 2016 | Minto B North | 668491 | 5316184 | 377 | 3              | 321.9 |
| TR16-11B  | 2016 | Minto B North | 668489 | 5316186 | 378 | 4              | 318.2 |
| TR16-11C  | 2016 | Minto B North | 668480 | 5316193 | 378 | 2              | 304.1 |
| TR16-11D  | 2016 | Minto B North | 668470 | 5316198 | 379 | 1              | 311.8 |
| TR16-11E  | 2016 | Minto B North | 668464 | 5316202 | 380 | 1              | 326.1 |
| TR16-11F  | 2016 | Minto B North | 668455 | 5316205 | 381 | 5              | 290.4 |
| TR16-11G  | 2016 | Minto B North | 668450 | 5316207 | 380 | 10             | 312.9 |
| TR16-11H  | 2016 | Minto B North | 668439 | 5316212 | 380 | 7              | 296.4 |

| Trench ID | Year | Trench Area               | x      | Y       | Z   | Length<br>(m)* | Az    |
|-----------|------|---------------------------|--------|---------|-----|----------------|-------|
| TR16-11I  | 2016 | Minto B North             | 668433 | 5316216 | 378 | 3              | 323.3 |
| TR16-11J  | 2016 | Minto B North             | 668430 | 5316217 | 378 | 7              | 318.2 |
| TR16-11K  | 2016 | Minto B North             | 668421 | 5316223 | 374 | 8              | 311.8 |
| TR16-11L  | 2016 | Minto B North             | 668417 | 5316226 | 375 | 18             | 289   |
| TR16-11M  | 2016 | Minto B North             | 668401 | 5316233 | 373 | 4              | 309.1 |
| TR16-11N  | 2016 | Minto B North             | 668400 | 5316237 | 368 | 5              | 317.3 |
| TR16-14A  | 2016 | Algoma Zone               | 668252 | 5316807 | 355 | 21             | 306.7 |
| TR16-14B  | 2016 | Algoma Zone               | 668235 | 5316819 | 354 | 6              | 314.8 |
| TR16-14C  | 2016 | Algoma Zone               | 668230 | 5316821 | 354 | 9              | 303.5 |
| TR16-9A   | 2016 | coreshack trench          | 667941 | 5316792 | 356 | 1              | 345   |
| TR16-9B   | 2016 | coreshack trench          | 667929 | 5316799 | 358 | 23             | 341.4 |
| TR16-9C   | 2016 | coreshack trench          | 667916 | 5316817 | 359 | 1              | 18.6  |
| TR16-9D   | 2016 | coreshack trench          | 667915 | 5316816 | 360 | 2              | 326.1 |
| TR16-9E   | 2016 | coreshack trench          | 667914 | 5316818 | 359 | 3              | 326.1 |
| TR16-18A  | 2016 | Mid                       | 668283 | 5317518 | 339 | 8              | 102.9 |
| TR16-18B  | 2016 | Mid                       | 668290 | 5317511 | 337 | 1.9            | 110.4 |
| TR16-18C  | 2016 | Mid                       | 668294 | 5317515 | 338 | 4.6            | 134.8 |
| TR16-18D  | 2016 | Mid                       | 668297 | 5317510 | 339 | 8.95           | 126.7 |
| TR16-18E  | 2016 | Mid                       | 668304 | 5317508 | 339 | 7              | 118.4 |
| TR16-15A  | 2016 | SR Zone TR16-1A extension | 668203 | 5317305 | 344 | 11             | 146.1 |
| TR16-15B  | 2016 | SR Zone TR16-1A extension | 668211 | 5317299 | 349 | 6              | 131.8 |
| TR16-15C  | 2016 | SR Zone TR16-1A extension | 668214 | 5317294 | 349 | 4              | 124.5 |
| TR16-15D  | 2016 | SR Zone TR16-1A extension | 668218 | 5317292 | 348 | 2              | 169.6 |
| TR16-15E  | 2016 | SR Zone TR16-1A extension | 668220 | 5317292 | 348 | 6              | 131.8 |
| TR16-15F  | 2016 | SR Zone TR16-1A extension | 668225 | 5317288 | 347 | 11             | 138.2 |
| TR16-4I   | 2016 | Williams                  | 668084 | 5317235 | 346 | 0.5            | 103.9 |
| TR16-4J   | 2016 | Williams                  | 668088 | 5317238 | 347 | 0.5            | 0     |
| TR16-4K   | 2016 | Williams                  | 668088 | 5317236 | 347 | 6              | 90    |
| TR16-4L   | 2016 | Williams                  | 668091 | 5317241 | 347 | 2.5            | 90    |
| TR16-4M   | 2016 | Williams                  | 668075 | 5317240 | 346 | 1.2            | 314.8 |
| TR16-4N   | 2016 | Williams                  | 668076 | 5317241 | 346 | 0.7            | 310.4 |
| TR16-13A  | 2016 | Shaft Trench              | 668013 | 5316954 | 356 | 20             | 316.8 |
| TR16-13B  | 2016 | Shaft Trench              | 668002 | 5316957 | 357 | 4              | 65.9  |
| TR16-13C  | 2016 | Shaft Trench              | 668005 | 5316959 | 357 | 8              | 61.6  |
| TR16-13D  | 2016 | Shaft Trench              | 668011 | 5316965 | 357 | 8              | 63.6  |
| TR16-13E  | 2016 | Shaft Trench              | 668013 | 5316971 | 357 | 1              | 195   |
| TR16-13F  | 2016 | Shaft Trench              | 668017 | 5316970 | 356 | 1              | 326.1 |
| TR16-13G  | 2016 | Shaft Trench              | 668018 | 5316967 | 356 | 2              | 5.5   |

| Trench ID   | Year | Trench Area                    | x      | Y       | Z   | Length<br>(m)* | Az    |
|-------------|------|--------------------------------|--------|---------|-----|----------------|-------|
| TR16-13H    | 2016 | Shaft Trench                   | 668005 | 5316960 | 357 | 1              | 33.9  |
| TR16-13I    | 2016 | Shaft Trench                   | 668011 | 5316958 | 357 | 1              | 18.6  |
| TR16-13J    | 2016 | Shaft Trench                   | 668014 | 5316957 | 356 | 1              | 341.4 |
| TR16-16A    | 2016 | Jubilee North extension trench | 668381 | 5317608 | 325 | 15             | 326.1 |
| TR16-16B    | 2016 | Jubilee North extension trench | 668375 | 5317621 | 318 | 2              | 308.5 |
| TR16-16C    | 2016 | Jubilee North extension trench | 668374 | 5317622 | 318 | 1              | 314.8 |
| TR16-16D    | 2016 | Jubilee North extension trench | 668373 | 5317623 | 318 | 1              | 300.8 |
| TR16-16E    | 2016 | Jubilee North extension trench | 668373 | 5317625 | 318 | 4              | 313   |
| TR16-17A    | 2016 | New Jubilee                    | 668252 | 5317339 | 349 | 1              | 5.5   |
| TR16-17B    | 2016 | New Jubilee                    | 668253 | 5317338 | 350 | 4.4            | 90    |
| TR16-17C    | 2016 | New Jubilee                    | 668256 | 5317338 | 351 | 3              | 102.9 |
| TR16-17D    | 2016 | New Jubilee                    | 668262 | 5317338 | 351 | 1.5            | 132.5 |
| TR16-17E    | 2016 | New Jubilee                    | 668263 | 5317338 | 351 | 3.1            | 96.5  |
| TR16-17F    | 2016 | New Jubilee                    | 668266 | 5317338 | 352 | 1              | 112.1 |
| TR16-17G    | 2016 | New Jubilee                    | 668266 | 5317339 | 351 | 7.35           | 90    |
| TR16-17H    | 2016 | New Jubilee                    | 668273 | 5317338 | 355 | 6.9            | 114.1 |
| TR16-17I    | 2016 | New Jubilee                    | 668277 | 5317335 | 356 | 0.6            | 15    |
| TR16-17J    | 2016 | New Jubilee                    | 668278 | 5317334 | 355 | 0.6            | 345   |
| TR16-17K    | 2016 | New Jubilee                    | 668280 | 5317334 | 354 | 3              | 123.5 |
| TR16-17L    | 2016 | New Jubilee                    | 668231 | 5317355 | 347 | 0.9            | 213.9 |
| TR16-17M    | 2016 | New Jubilee                    | 668232 | 5317357 | 346 | 0.28           | 138.2 |
| RV-1        | 2017 | Root Vein                      | 668775 | 5318461 | 302 | 5.6            | 318   |
| RV-2        | 2017 | Root Vein                      | 668777 | 5318461 | 302 | 7              | 322   |
| RV-3        | 2017 | Root Vein                      | 668780 | 5318465 | 302 | 10             | 307   |
| RV-4        | 2017 | Root Vein                      | 668781 | 5318467 | 303 | 8              | 316   |
| RV-5        | 2017 | Root Vein                      | 668781 | 5318457 | 299 | 3              | 334   |
| RV-6        | 2017 | Root Vein                      | 668784 | 5318459 | 300 | 5              | 321   |
| RV-7        | 2017 | Root Vein                      | 668786 | 5318460 | 300 | 4              | 323   |
| RV-8        | 2017 | Root Vein                      | 668785 | 5318462 | 300 | 1              | 315   |
| RV-9        | 2017 | Root Vein                      | 668771 | 5318468 | 305 | 7              | 307   |
| CG-1        | 2018 | Cooper Ganley                  | 669583 | 5317951 | 363 | 0.65           | 170   |
| CG-2        | 2018 | Cooper Ganley                  | 669580 | 5317950 | 362 | 2.02           | 234   |
| CG-3        | 2018 | Cooper Ganley                  | 669578 | 5317950 | 362 | 0.6            | 220   |
| CG-4        | 2018 | Cooper Ganley                  | 669578 | 5317949 | 362 | 1.53           | 220   |
| CG-5        | 2018 | Cooper Ganley                  | 669576 | 5317949 | 362 | 3.4            | 230   |
| CG-6        | 2018 | Cooper Ganley                  | 669572 | 5317944 | 364 | 2.23           | 336   |
| Cooper-11-1 | 2019 | Cooper Ganley                  | 669244 | 5318067 | 365 | 4.02           | 55    |
| Cooper-11-2 | 2019 | Cooper Ganley                  | 669252 | 5318068 | 366 | 6.85           | 237   |

| Trench ID   | Year | Trench Area   | X      | Y       | Z   | Length<br>(m)* | Az  |
|-------------|------|---------------|--------|---------|-----|----------------|-----|
| Cooper-11-3 | 2019 | Cooper Ganley | 669240 | 5318072 | 366 | 3              | 139 |
| Cooper-11-4 | 2019 | Cooper Ganley | 669244 | 5318063 | 364 | 1.5            | 128 |
| Cooper-11-5 | 2019 | Cooper Ganley | 669244 | 5318069 | 365 | 1.5            | 72  |
| Cooper-11-6 | 2019 | Cooper Ganley | 669245 | 5318070 | 365 | 1.25           | 67  |
| Cooper-4-1  | 2019 | Cooper Ganley | 669311 | 5318166 | 372 | 1.9            | 58  |
| Cooper-4-2  | 2019 | Cooper Ganley | 669308 | 5318165 | 371 | 1.5            | 14  |
| CG-1-1      | 2019 | Cooper Ganley | 669360 | 5318112 | 379 | 4.4            | 225 |
| CG-1-2      | 2019 | Cooper Ganley | 669365 | 5318106 | 379 | 4.3            | 229 |
| CG-1-3      | 2019 | Cooper Ganley | 669354 | 5318092 | 380 | 7              | 177 |
| CG-1-4      | 2019 | Cooper Ganley | 669373 | 5318115 | 381 | 2.6            | 186 |
| Ganley-3a-1 | 2019 | Cooper Ganley | 669396 | 5318183 | 371 | 1.5            | 208 |
| Cooper-1-1  | 2019 | Cooper Ganley | 669317 | 5318160 | 375 | 1.5            | 0   |
| Cooper-1-2  | 2019 | Cooper Ganley | 669316 | 5318159 | 375 | 3.35           | 248 |
| Cooper-1-3  | 2019 | Cooper Ganley | 669303 | 5318148 | 375 | 1.5            | 308 |
| Cooper-6a-1 | 2019 | Cooper Ganley | 669295 | 5318177 | 372 | 1.09           | 307 |
| Cooper-6a-2 | 2019 | Cooper Ganley | 669294 | 5318180 | 372 | 0.9            | 307 |
| Cooper-5a-1 | 2019 | Cooper Ganley | 669851 | 5317822 | 358 | 4.1            | 70  |
| Ganley-3b-1 | 2019 | Cooper Ganley | 669380 | 5318188 | 370 | 3.62           | 350 |
| Ganley-3b-2 | 2019 | Cooper Ganley | 669381 | 5318191 | 370 | 1.2            | 27  |
| Ganley-3-1  | 2019 | Cooper Ganley | 669401 | 5318160 | 373 | 5.75           | 338 |
| Cooper-8-1  | 2019 | Cooper Ganley | 669278 | 5318247 | 368 | 2.75           | 51  |
| Cooper-8-2  | 2019 | Cooper Ganley | 669278 | 5318251 | 367 | 1.1            | 83  |
| Cooper-10-4 | 2019 | Cooper Ganley | 669273 | 5318290 | 364 | 0.95           | 180 |
| Cooper-10-1 | 2019 | Cooper Ganley | 669272 | 5318295 | 363 | 5.75           | 227 |
| Cooper-10-2 | 2019 | Cooper Ganley | 669267 | 5318296 | 362 | 2.99           | 208 |
| Cooper-10-3 | 2019 | Cooper Ganley | 669275 | 5318294 | 364 | 5.4            | 125 |
| Cooper-6-1  | 2019 | Cooper Ganley | 669292 | 5318197 | 375 | 2.44           | 248 |
| Cooper-6-2  | 2019 | Cooper Ganley | 669286 | 5318197 | 376 | 2.7            | 20  |
| Cooper-2-1  | 2019 | Cooper Ganley | 669637 | 5317918 | 362 | 3              | 42  |
| Cooper-2-5  | 2019 | Cooper Ganley | 669638 | 5317921 | 361 | 1.1            | 8   |
| Cooper-2-1a | 2019 | Cooper Ganley | 669639 | 5317922 | 362 | 3.7            | 27  |
| Cooper-2-6  | 2019 | Cooper Ganley | 669639 | 5317922 | 362 | 0.6            | 0   |
| Cooper-2-2  | 2019 | Cooper Ganley | 669653 | 5317935 | 361 | 2.6            | 195 |
| Cooper-2-3  | 2019 | Cooper Ganley | 669626 | 5317911 | 362 | 4.5            | 345 |
| Cooper-2-4  | 2019 | Cooper Ganley | 669633 | 5317918 | 362 | 5.9            | 19  |
| Cooper-5b-1 | 2019 | Cooper Ganley | 669832 | 5317817 | 358 | 8.9            | 58  |
| Cooper-5b-2 | 2019 | Cooper Ganley | 669838 | 5317817 | 357 | 1.4            | 349 |
| Cooper-5b-3 | 2019 | Cooper Ganley | 669841 | 5317813 | 358 | 1.4            | 13  |

| Trench ID   | Year | Trench Area   | X      | Y       | Z   | Length<br>(m)* | Az    |
|-------------|------|---------------|--------|---------|-----|----------------|-------|
| Cooper-5a-2 | 2019 | Cooper Ganley | 669857 | 5317830 | 359 | 5.4            | 100   |
| Cooper-5a-3 | 2019 | Cooper Ganley | 669863 | 5317832 | 359 | 1.4            | 105   |
| Cooper-5a-4 | 2019 | Cooper Ganley | 669882 | 5317855 | 358 | 1.5            | 186   |
| Ganley-1-1  | 2019 | Cooper Ganley | 669539 | 5318057 | 371 | 8.8            | 65    |
| Ganley-1-2  | 2019 | Cooper Ganley | 669548 | 5318052 | 370 | 2.9            | 38    |
| Cooper-3-1  | 2019 | Cooper Ganley | 669770 | 5317856 | 359 | 7.2            | 42    |
| Cooper-3-2  | 2019 | Cooper Ganley | 669768 | 5317860 | 356 | 1.5            | 0     |
| Cooper-3-3  | 2019 | Cooper Ganley | 669753 | 5317843 | 361 | 2.2            | 296   |
| Trench-2-1  | 2019 | Darwin        | 668036 | 5313442 | 345 | 2.55           | 237   |
| Trench-2-2  | 2019 | Darwin        | 668034 | 5313440 | 345 | 1.3            | 245   |
| Trench-2-4  | 2019 | Darwin        | 668034 | 5313439 | 345 | 1.5            | 244   |
| Trench-2-3  | 2019 | Darwin        | 668024 | 5313438 | 346 | 3.2            | 58    |
| Trench-4-1  | 2019 | Darwin        | 668121 | 5313258 | 341 | 2.95           | 318   |
| Trench-4-2  | 2019 | Darwin        | 668132 | 5313262 | 338 | 1.5            | 180   |
| Trench-4-3  | 2019 | Darwin        | 668134 | 5313262 | 337 | 1.54           | 239   |
| Trench-3A-1 | 2019 | Darwin        | 668055 | 5313406 | 345 | 2.8            | 26    |
| Trench-3A-2 | 2019 | Darwin        | 668059 | 5313409 | 347 | 1.5            | 82    |
| Trench-3A-3 | 2019 | Darwin        | 668062 | 5313408 | 346 | 2              | 312   |
| Trench-3B-1 | 2019 | Darwin        | 668040 | 5313400 | 345 | 1.5            | 6     |
| Trench-3B-2 | 2019 | Darwin        | 668026 | 5313379 | 345 | 1.5            | 9     |
| Trench-3B-3 | 2019 | Darwin        | 668017 | 5313377 | 346 | 2.5            | 122   |
| Trench-3B-4 | 2019 | Darwin        | 668013 | 5313376 | 346 | 1.5            | 53    |
| Gulch-A-1   | 2019 | Gulch         | 669766 | 5318728 | 353 | 1.4            | 100   |
| Gulch-A-2   | 2019 | Gulch         | 669773 | 5318728 | 352 | 2.5            | 270   |
| Gulch-B-1   | 2019 | Gulch         | 669783 | 5318726 | 360 | 0.6            | 352.3 |
| Gulch-B-2   | 2019 | Gulch         | 669781 | 5318724 | 356 | 1.07           | 352.3 |
| Gulch-B-3   | 2019 | Gulch         | 669781 | 5318726 | 357 | 0.75           | 352.3 |
| Trench-5A-1 | 2019 | Darwin        | 667939 | 5313623 | 354 | 1.5            | 94    |
| Trench-5A-2 | 2019 | Darwin        | 667941 | 5313623 | 353 | 3.6            | 64    |
| Trench-5A-3 | 2019 | Darwin        | 667944 | 5313624 | 351 | 1.5            | 57    |
| Trench-5A-6 | 2019 | Darwin        | 667944 | 5313626 | 353 | 1.5            | 52    |
| Trench-5A-4 | 2019 | Darwin        | 667946 | 5313627 | 353 | 3.1            | 48    |
| Trench-5A-5 | 2019 | Darwin        | 667949 | 5313629 | 352 | 2.3            | 50    |
| Trench-5B-1 | 2019 | Darwin        | 667959 | 5313614 | 347 | 1.65           | 70    |
| Trench-5B-2 | 2019 | Darwin        | 667970 | 5313621 | 349 | 0.9            | 303   |
| Trench-5B-3 | 2019 | Darwin        | 667956 | 5313611 | 347 | 1.75           | 53    |
| Trench-5B-4 | 2019 | Darwin        | 667964 | 5313617 | 349 | 1.5            | 19    |
| Trench-5B-5 | 2019 | Darwin        | 667957 | 5313612 | 347 | 0.7            | 45    |

| Trench ID        | Year | Trench Area   | x      | Y       | Z   | Length<br>(m)* | Az   |
|------------------|------|---------------|--------|---------|-----|----------------|------|
| Trench-5C-1      | 2019 | Darwin        | 667934 | 5313601 | 343 | 3              | 40   |
| Trench-5C-2      | 2019 | Darwin        | 667928 | 5313599 | 342 | 4.5            | 53   |
| Trench-5C-3      | 2019 | Darwin        | 667940 | 5313605 | 343 | 1              | 53   |
| Trench-1-1       | 2019 | Darwin        | 667981 | 5313495 | 344 | 1              | 316  |
| Trench-1-2       | 2019 | Darwin        | 667993 | 5313503 | 346 | 1.5            | 48   |
| Trench-1-3       | 2019 | Darwin        | 668000 | 5313509 | 345 | 3              | 53   |
| Trench-1-4       | 2019 | Darwin        | 668003 | 5313509 | 344 | 4.2            | 39   |
| Trench-1-5       | 2019 | Darwin        | 668018 | 5313519 | 343 | 1.5            | 143  |
| Trench-1-6       | 2019 | Darwin        | 668019 | 5313518 | 343 | 0.95           | 143  |
| Trench-1-7       | 2019 | Darwin        | 667976 | 5313492 | 344 | 1.57           | 45.7 |
| Jubilee-SouthA-1 | 2019 | Darwin        | 667621 | 5314040 | 360 | 5.4            | 103  |
| Jubilee-SouthA-2 | 2019 | Darwin        | 667621 | 5314039 | 360 | 1.1            | 10   |
| Jubilee-SouthA-3 | 2019 | Darwin        | 667626 | 5314039 | 359 | 3              | 97   |
| Jubilee-SouthA-4 | 2019 | Darwin        | 667629 | 5314039 | 359 | 3.6            | 108  |
| Jubilee-SouthA-5 | 2019 | Darwin        | 667615 | 5314041 | 360 | 1.75           | 133  |
| Jubilee-SouthA-6 | 2019 | Darwin        | 667617 | 5314040 | 360 | 0.74           | 135  |
| Jubilee-SouthA-7 | 2019 | Darwin        | 667618 | 5314041 | 360 | 3              | 118  |
| Jubilee-SouthA-8 | 2019 | Darwin        | 667633 | 5314039 | 357 | 1.5            | 144  |
| Jubilee-SouthA-9 | 2019 | Darwin        | 667635 | 5314039 | 358 | 1.6            | 142  |
| JSZ_SouthB-1     | 2019 | Jubilee South | 667638 | 5314038 | 358 | 1.2            | 96   |
| JSZ_SouthB-2     | 2019 | Jubilee South | 667638 | 5314037 | 358 | 4              | 97   |
| JSZ_SouthB-3     | 2019 | Jubilee South | 667641 | 5314035 | 359 | 0.7            | 72   |
| JSZ_SouthB-4     | 2019 | Jubilee South | 667643 | 5314035 | 359 | 9.8            | 124  |
| JSZ_SouthC-1     | 2019 | Jubilee South | 667659 | 5314026 | 357 | 1              | 175  |
| JSZ_SouthC-2     | 2019 | Jubilee South | 667660 | 5314027 | 358 | 1              | 135  |
| JSZ_SouthC-3     | 2019 | Jubilee South | 667666 | 5314023 | 358 | 1.8            | 121  |
| JSZ_SouthC-4     | 2019 | Jubilee South | 667668 | 5314022 | 358 | 2.8            | 170  |
| JSZ_SouthC-5     | 2019 | Jubilee South | 667670 | 5314020 | 359 | 1.2            | 140  |
| JSZ_SouthC-6     | 2019 | Jubilee South | 667671 | 5314020 | 359 | 2.15           | 137  |
| JSZ_SouthC-7     | 2019 | Jubilee South | 667672 | 5314018 | 359 | 1.2            | 139  |
| JSZ_SouthC-8     | 2019 | Jubilee South | 667673 | 5314020 | 358 | 1.3            | 120  |
| JSZ_SouthC-9     | 2019 | Jubilee South | 667675 | 5314019 | 358 | 1.55           | 107  |
| JSZ_SouthC-10    | 2019 | Jubilee South | 667676 | 5314018 | 357 | 1.75           | 127  |
| JSZ_SouthC-11    | 2019 | Jubilee South | 667678 | 5314018 | 356 | 2.4            | 124  |
| JSZ_SouthC-12    | 2019 | Jubilee South | 667679 | 5314016 | 356 | 1              | 132  |
| JSZ_SouthC-13    | 2019 | Jubilee South | 667681 | 5314017 | 355 | 1.15           | 146  |
| JSZ_SouthC-14    | 2019 | Jubilee South | 667681 | 5314016 | 355 | 0.8            | 141  |
| JSZ_SouthC-15    | 2019 | Jubilee South | 667682 | 5314016 | 355 | 1.5            | 130  |

| Trench ID      | Year | Trench Area   | x      | Y       | Z   | Length<br>(m)* | Az  |
|----------------|------|---------------|--------|---------|-----|----------------|-----|
| JSZ_SouthC-16  | 2019 | Jubilee South | 667683 | 5314017 | 355 | 2.2            | 135 |
| JSZ_South2-6   | 2019 | Jubilee South | 667666 | 5313977 | 358 | 5.05           | 130 |
| JSZ_South2-8   | 2019 | Jubilee South | 667676 | 5313979 | 354 | 7.48           | 116 |
| JSZ_South2-1   | 2019 | Jubilee South | 667656 | 5313965 | 361 | 3.26           | 75  |
| JSZ_South2-2   | 2019 | Jubilee South | 667657 | 5313968 | 360 | 2.5            | 103 |
| JSZ_South2-3   | 2019 | Jubilee South | 667659 | 5313969 | 361 | 1.4            | 90  |
| JSZ_South2-7   | 2019 | Jubilee South | 667669 | 5313979 | 357 | 7.5            | 116 |
| JSZ_South3B-1  | 2019 | Jubilee South | 667641 | 5314145 | 343 | 1.1            | 78  |
| JSZ_South3B-2  | 2019 | Jubilee South | 667642 | 5314145 | 343 | 1              | 139 |
| JSZ_South3B-3  | 2019 | Jubilee South | 667644 | 5314144 | 343 | 3.2            | 135 |
| JSZ_South3B-4  | 2019 | Jubilee South | 667648 | 5314143 | 344 | 0.8            | 133 |
| JSZ_South3B-5  | 2019 | Jubilee South | 667649 | 5314142 | 344 | 5.3            | 123 |
| JSZ_South3B-6  | 2019 | Jubilee South | 667657 | 5314137 | 343 | 3              | 138 |
| JSZ_South3B-7  | 2019 | Jubilee South | 667660 | 5314136 | 345 | 2.9            | 130 |
| JSZ_South3B-8  | 2019 | Jubilee South | 667663 | 5314134 | 344 | 3.6            | 133 |
| JSZ_South3B-9  | 2019 | Jubilee South | 667667 | 5314131 | 344 | 1              | 103 |
| JSZ_South3B-10 | 2019 | Jubilee South | 667668 | 5314131 | 344 | 1.1            | 76  |
| JSZ_South3B-11 | 2019 | Jubilee South | 667669 | 5314131 | 345 | 1              | 150 |
| JSZ_South3B-12 | 2019 | Jubilee South | 667670 | 5314130 | 346 | 5.75           | 127 |
| JSZ_South3B-13 | 2019 | Jubilee South | 667674 | 5314127 | 345 | 3.55           | 123 |
| JSZ_South3B-14 | 2019 | Jubilee South | 667678 | 5314126 | 344 | 2.7            | 119 |
| JSZ_South2-4   | 2019 | Jubilee South | 667659 | 5313972 | 360 | 5              | 116 |
| JSZ_South2-5   | 2019 | Jubilee South | 667663 | 5313972 | 360 | 3.45           | 13  |
| JSZ_South3A-1  | 2019 | Jubilee South | 667684 | 5314121 | 344 | 1.85           | 127 |
| JSZ_South3A-2  | 2019 | Jubilee South | 667685 | 5314118 | 347 | 0.8            | 146 |
| JSZ_South3A-3  | 2019 | Jubilee South | 667686 | 5314117 | 347 | 3.6            | 150 |
| JSZ_South3A-4  | 2019 | Jubilee South | 667692 | 5314116 | 348 | 2              | 130 |
| JSZ_South3A-5  | 2019 | Jubilee South | 667695 | 5314117 | 348 | 2              | 122 |
| JSZ_South3A-6  | 2019 | Jubilee South | 667695 | 5314115 | 349 | 3              | 123 |
| JSZ_South3A-7  | 2019 | Jubilee South | 667698 | 5314114 | 348 | 2.9            | 123 |
| JSZ_South3A-8  | 2019 | Jubilee South | 667701 | 5314113 | 347 | 6.8            | 124 |
| JSZ_South3A-9  | 2019 | Jubilee South | 667706 | 5314109 | 344 | 2              | 138 |
| JSZ_South3A-10 | 2019 | Jubilee South | 667708 | 5314109 | 344 | 4.3            | 124 |
| Minto-08D      | 2020 | Minto         | 668270 | 5315158 | 345 | 2              | 204 |
| Minto-08C      | 2020 | Minto         | 668257 | 5315150 | 343 | 0.8            | 119 |
| Minto-08B      | 2020 | Minto         | 668243 | 5315141 | 343 | 1              | 50  |
| Minto-08A      | 2020 | Minto         | 668239 | 5315141 | 344 | 3.4            | 62  |
| Minto-06-2     | 2020 | Minto         | 668029 | 5315249 | 345 | 1              | 75  |

| Trench ID    | Year | Trench Area | x      | Y       | Z   | Length<br>(m)* | Az  |
|--------------|------|-------------|--------|---------|-----|----------------|-----|
| Minto-06-1   | 2020 | Minto       | 668027 | 5315249 | 345 | 0.8            | 53  |
| Minto-07-4   | 2020 | Minto       | 668064 | 5315203 | 343 | 1.05           | 150 |
| Minto-07-3   | 2020 | Minto       | 668064 | 5315206 | 343 | 0.7            | 161 |
| Minto-07-2   | 2020 | Minto       | 668064 | 5315205 | 343 | 2.4            | 47  |
| Trench-6-8   | 2020 | Darwin      | 667823 | 5313735 | 380 | 1              | 42  |
| Trench-6-7   | 2020 | Darwin      | 667881 | 5313773 | 383 | 1.5            | 81  |
| Trench-6-6   | 2020 | Darwin      | 667873 | 5313764 | 383 | 3              | 354 |
| Trench-6-5   | 2020 | Darwin      | 667846 | 5313751 | 381 | 1.5            | 6   |
| Trench-6-4   | 2020 | Darwin      | 667839 | 5313747 | 381 | 3              | 64  |
| Trench-6-3   | 2020 | Darwin      | 667826 | 5313738 | 380 | 1.3            | 20  |
| Trench-6-2   | 2020 | Darwin      | 667818 | 5313731 | 380 | 1              | 70  |
| Trench-6-1   | 2020 | Darwin      | 667816 | 5313730 | 380 | 1.5            | 104 |
| Trench-7B-2  | 2020 | Darwin      | 668012 | 5313559 | 346 | 1.46           | 55  |
| Trench-7B-1  | 2020 | Darwin      | 668011 | 5313557 | 346 | 5.93           | 341 |
| Trench-7A-9  | 2020 | Darwin      | 667984 | 5313543 | 349 | 2.7            | 166 |
| Trench-7A-8  | 2020 | Darwin      | 667985 | 5313545 | 349 | 1.3            | 190 |
| Trench-7A-7  | 2020 | Darwin      | 667983 | 5313538 | 348 | 0.65           | 172 |
| Trench-7A-6  | 2020 | Darwin      | 667981 | 5313540 | 348 | 2.3            | 120 |
| Trench-7A-5  | 2020 | Darwin      | 667979 | 5313543 | 349 | 2.3            | 60  |
| Trench-7A-4  | 2020 | Darwin      | 667975 | 5313539 | 348 | 5.85           | 43  |
| Trench-7A-3  | 2020 | Darwin      | 667974 | 5313537 | 348 | 2.2            | 11  |
| Trench-7A-2  | 2020 | Darwin      | 667973 | 5313536 | 348 | 1.8            | 44  |
| Trench-7A-1  | 2020 | Darwin      | 667972 | 5313538 | 348 | 1.3            | 59  |
| Minto-07-1   | 2020 | Minto       | 668061 | 5315210 | 342 | 3.72           | 146 |
| Mickelson-1N | 2020 | Mickelson   | 668916 | 5315681 | 351 | 1.3            | 199 |
| Mickelson-1M | 2020 | Mickelson   | 668914 | 5315683 | 351 | 1.3            | 80  |
| Mickelson-1L | 2020 | Mickelson   | 668914 | 5315683 | 351 | 0.8            | 185 |
| Mickelson-1K | 2020 | Mickelson   | 668913 | 5315684 | 351 | 2.3            | 191 |
| Mickelson-1J | 2020 | Mickelson   | 668910 | 5315683 | 351 | 1.1            | 197 |
| Mickelson-11 | 2020 | Mickelson   | 668909 | 5315686 | 352 | 2.15           | 166 |
| Mickelson-1H | 2020 | Mickelson   | 668917 | 5315692 | 352 | 1.3            | 180 |
| Mickelson-1G | 2020 | Mickelson   | 668902 | 5315689 | 352 | 0.45           | 146 |
| Mickelson-1F | 2020 | Mickelson   | 668902 | 5315691 | 352 | 1.3            | 193 |
| Mickelson-1E | 2020 | Mickelson   | 668896 | 5315690 | 353 | 0.75           | 185 |
| Mickelson-1D | 2020 | Mickelson   | 668885 | 5315693 | 353 | 3.1            | 174 |
| Mickelson-1C | 2020 | Mickelson   | 668887 | 5315695 | 353 | 2.05           | 166 |
| Mickelson-1B | 2020 | Mickelson   | 668887 | 5315695 | 353 | 0.75           | 186 |
| Mickelson-1A | 2020 | Mickelson   | 668884 | 5315698 | 353 | 2              | 101 |

| Trench ID | Year | Trench Area | x      | Y       | Z   | Length<br>(m)* | Az  |
|-----------|------|-------------|--------|---------|-----|----------------|-----|
| Minto-04N | 2020 | Minto       | 668950 | 5314228 | 359 | 1.3            | 133 |
| Minto-04M | 2020 | Minto       | 668947 | 5314225 | 360 | 1.4            | 20  |
| Minto-04L | 2020 | Minto       | 668943 | 5314223 | 360 | 1.5            | 144 |
| Minto-04K | 2020 | Minto       | 668932 | 5314216 | 361 | 1.5            | 141 |
| Minto-04J | 2020 | Minto       | 668925 | 5314212 | 360 | 1.3            | 37  |
| Minto-04I | 2020 | Minto       | 668924 | 5314211 | 360 | 1.2            | 152 |
| Minto-04H | 2020 | Minto       | 668923 | 5314208 | 360 | 3.75           | 57  |
| Minto-04G | 2020 | Minto       | 668918 | 5314206 | 359 | 2.6            | 150 |
| Minto-04F | 2020 | Minto       | 668916 | 5314203 | 360 | 1.3            | 109 |
| Minto-04E | 2020 | Minto       | 668910 | 5314202 | 359 | 1.3            | 152 |
| Minto-04D | 2020 | Minto       | 668903 | 5314199 | 359 | 1              | 138 |
| Minto-04C | 2020 | Minto       | 668895 | 5314189 | 361 | 1.5            | 123 |
| Minto-04B | 2020 | Minto       | 668888 | 5314177 | 365 | 1.5            | 136 |
| Minto-04A | 2020 | Minto       | 668860 | 5314144 | 366 | 1.2            | 22  |
| Minto-03D | 2020 | Minto       | 668474 | 5314645 | 347 | 1.5            | 175 |
| Minto-03C | 2020 | Minto       | 668470 | 5314641 | 347 | 1              | 167 |
| Minto-03B | 2020 | Minto       | 668467 | 5314638 | 347 | 1.5            | 17  |
| Minto-03A | 2020 | Minto       | 668399 | 5314617 | 342 | 1.4            | 170 |
| Minto-02G | 2020 | Minto       | 668335 | 5314759 | 341 | 1.5            | 135 |
| Minto-02F | 2020 | Minto       | 668337 | 5314760 | 342 | 1.5            | 29  |
| Minto-02E | 2020 | Minto       | 668338 | 5314761 | 341 | 1.5            | 36  |
| Minto-02D | 2020 | Minto       | 668373 | 5314778 | 349 | 1.3            | 149 |
| Minto-02C | 2020 | Minto       | 668445 | 5314824 | 357 | 1.15           | 150 |
| Minto-02B | 2020 | Minto       | 668448 | 5314826 | 357 | 1              | 161 |
| Minto-02A | 2020 | Minto       | 668462 | 5314836 | 359 | 1.4            | 135 |
| Minto-01V | 2020 | Minto       | 668414 | 5314945 | 358 | 1.85           | 207 |
| Minto-01U | 2020 | Minto       | 668412 | 5314945 | 358 | 1.1            | 170 |
| Minto-01T | 2020 | Minto       | 668410 | 5314945 | 358 | 1.05           | 175 |
| Minto-01S | 2020 | Minto       | 668409 | 5314944 | 358 | 0.75           | 141 |
| Minto-01R | 2020 | Minto       | 668404 | 5314945 | 357 | 0.63           | 170 |
| Minto-01Q | 2020 | Minto       | 668403 | 5314944 | 357 | 1.25           | 167 |
| Minto-01P | 2020 | Minto       | 668401 | 5314946 | 356 | 1.5            | 170 |
| Minto-01O | 2020 | Minto       | 668398 | 5314944 | 355 | 1.1            | 166 |
| Minto-01N | 2020 | Minto       | 668397 | 5314942 | 354 | 0.5            | 146 |
| Minto-01M | 2020 | Minto       | 668395 | 5314944 | 355 | 1.05           | 167 |
| Minto-01L | 2020 | Minto       | 668389 | 5314944 | 353 | 1.8            | 161 |
| Minto-01K | 2020 | Minto       | 668381 | 5314943 | 353 | 1              | 150 |
| Minto-01J | 2020 | Minto       | 668379 | 5314944 | 352 | 0.8            | 156 |

| Trench ID    | Year | Trench Area | x      | Y       | Z   | Length<br>(m)* | Az  |
|--------------|------|-------------|--------|---------|-----|----------------|-----|
| Minto-01I    | 2020 | Minto       | 668366 | 5314946 | 350 | 1.5            | 143 |
| Minto-01H    | 2020 | Minto       | 668369 | 5314948 | 350 | 1.15           | 79  |
| Minto-01G    | 2020 | Minto       | 668368 | 5314945 | 350 | 1.3            | 170 |
| Minto-01F    | 2020 | Minto       | 668360 | 5314937 | 349 | 0.74           | 165 |
| Minto-01E    | 2020 | Minto       | 668356 | 5314935 | 349 | 0.84           | 156 |
| Minto-01D    | 2020 | Minto       | 668355 | 5314937 | 350 | 0.8            | 159 |
| Minto-01C    | 2020 | Minto       | 668345 | 5314933 | 349 | 1.2            | 180 |
| Minto-01B    | 2020 | Minto       | 668293 | 5314917 | 349 | 1.5            | 110 |
| Minto-01A    | 2020 | Minto       | 668288 | 5314920 | 347 | 1.5            | 107 |
| Minto-05U    | 2020 | Minto       | 668888 | 5314105 | 369 | 1.2            | 152 |
| Minto-05T    | 2020 | Minto       | 668885 | 5314099 | 369 | 0.75           | 186 |
| Minto-05S    | 2020 | Minto       | 668878 | 5314099 | 367 | 3.7            | 55  |
| Minto-05R    | 2020 | Minto       | 668878 | 5314100 | 368 | 1.1            | 58  |
| Minto-05Q    | 2020 | Minto       | 668881 | 5314091 | 368 | 0.85           | 43  |
| Minto-05P    | 2020 | Minto       | 668881 | 5314089 | 367 | 1.1            | 8   |
| Minto-05O    | 2020 | Minto       | 668877 | 5314096 | 369 | 1.95           | 142 |
| Minto-05N    | 2020 | Minto       | 668877 | 5314094 | 368 | 0.8            | 28  |
| Minto-05M    | 2020 | Minto       | 668874 | 5314094 | 368 | 2.1            | 172 |
| Minto-05L    | 2020 | Minto       | 668874 | 5314096 | 368 | 1              | 142 |
| Minto-05K    | 2020 | Minto       | 668876 | 5314095 | 368 | 3.4            | 186 |
| Minto-05J    | 2020 | Minto       | 668872 | 5314092 | 368 | 1.4            | 99  |
| Minto-05I    | 2020 | Minto       | 668871 | 5314094 | 368 | 4.95           | 50  |
| Minto-05H    | 2020 | Minto       | 668870 | 5314097 | 367 | 1.3            | 149 |
| Minto-05G    | 2020 | Minto       | 668869 | 5314096 | 367 | 1.2            | 158 |
| Minto-05F    | 2020 | Minto       | 668863 | 5314091 | 366 | 0.66           | 146 |
| Minto-05E    | 2020 | Minto       | 668853 | 5314082 | 367 | 2.6            | 141 |
| Minto-05D    | 2020 | Minto       | 668845 | 5314074 | 367 | 1.2            | 107 |
| Minto-05C    | 2020 | Minto       | 668845 | 5314073 | 367 | 1.3            | 48  |
| Minto-05B    | 2020 | Minto       | 668844 | 5314073 | 366 | 1.5            | 161 |
| Minto-05A    | 2020 | Minto       | 668812 | 5314041 | 362 | 1.25           | 56  |
| Minto-04P    | 2020 | Parkhill    | 668946 | 5314225 | 359 | 2.8            | 137 |
| Minto-04O    | 2020 | Parkhill    | 668945 | 5314222 | 360 | 4.5            | 45  |
| Parkhill-01X | 2020 | Parkhill    | 668616 | 5315077 | 367 | 2.05           | 90  |
| Parkhill-01W | 2020 | Parkhill    | 668616 | 5315078 | 368 | 0.9            | 170 |
| Parkhill-01V | 2020 | Parkhill    | 668615 | 5315079 | 367 | 0.9            | 72  |
| Parkhill-01U | 2020 | Parkhill    | 668612 | 5315082 | 367 | 0.6            | 127 |
| Parkhill-01T | 2020 | Parkhill    | 668607 | 5315086 | 369 | 1.15           | 143 |
| Parkhill-01S | 2020 | Parkhill    | 668601 | 5315092 | 370 | 0.9            | 26  |

| Trench ID    | Year | Trench Area | x      | Y       | Z   | Length<br>(m)* | Az  |
|--------------|------|-------------|--------|---------|-----|----------------|-----|
| Parkhill-01R | 2020 | Parkhill    | 668593 | 5315100 | 370 | 1.15           | 152 |
| Parkhill-01Q | 2020 | Parkhill    | 668588 | 5315105 | 369 | 1.75           | 114 |
| Parkhill-01P | 2020 | Parkhill    | 668576 | 5315128 | 364 | 1.9            | 112 |
| Parkhill-01O | 2020 | Parkhill    | 668560 | 5315176 | 360 | 0.6            | 352 |
| Parkhill-01N | 2020 | Parkhill    | 668560 | 5315177 | 360 | 0.7            | 345 |
| Parkhill-01M | 2020 | Parkhill    | 668554 | 5315197 | 364 | 1.5            | 185 |
| Parkhill-01L | 2020 | Parkhill    | 668550 | 5315206 | 364 | 1.2            | 165 |
| Parkhill-01K | 2020 | Parkhill    | 668546 | 5315221 | 363 | 1.22           | 156 |
| Parkhill-01J | 2020 | Parkhill    | 668545 | 5315223 | 366 | 2.35           | 158 |
| Parkhill-01I | 2020 | Parkhill    | 668543 | 5315229 | 367 | 1.15           | 146 |
| Parkhill-01H | 2020 | Parkhill    | 668542 | 5315233 | 368 | 1.5            | 136 |
| Parkhill-01G | 2020 | Parkhill    | 668540 | 5315238 | 368 | 1.1            | 169 |
| Parkhill-01F | 2020 | Parkhill    | 668539 | 5315240 | 369 | 1.3            | 141 |
| Parkhill-01E | 2020 | Parkhill    | 668537 | 5315241 | 368 | 1.3            | 154 |
| Parkhill-01D | 2020 | Parkhill    | 668532 | 5315247 | 368 | 0.6            | 247 |
| Parkhill-01C | 2020 | Parkhill    | 668524 | 5315257 | 371 | 0.85           | 180 |
| Parkhill-01B | 2020 | Parkhill    | 668523 | 5315259 | 371 | 1.35           | 190 |
| Parkhill-01A | 2020 | Parkhill    | 668520 | 5315260 | 370 | 0.85           | 164 |
| Parkhill-01A | 2020 | Parkhill    | 668520 | 5315260 | 370 | 0              | 1   |
| WE-21-001-8  | 2021 | War Eagle   | 668409 | 5312325 | 289 | 5.7            | 149 |
| WE-21-001-7  | 2021 | War Eagle   | 668411 | 5312324 | 292 | 4.7            | 122 |
| WE-21-001-6  | 2021 | War Eagle   | 668416 | 5312328 | 294 | 5              | 120 |
| WE-21-001-5  | 2021 | War Eagle   | 668419 | 5312336 | 293 | 1              | 124 |
| WE-21-001-4  | 2021 | War Eagle   | 668419 | 5312334 | 290 | 3.4            | 121 |
| WE-21-001-3  | 2021 | War Eagle   | 668419 | 5312335 | 291 | 2              | 135 |
| WE-21-001-2  | 2021 | War Eagle   | 668423 | 5312343 | 289 | 3              | 128 |
| WE-21-001-1  | 2021 | War Eagle   | 668424 | 5312347 | 292 | 4.5            | 134 |

Note: \*True width cannot be calculated due to surface irregularities along the series of channel samples.



Figure 9-12: Red Pine Wawa Gold Project Trenching and Channel Sampling Locations from 2015 to 2022

| Trench ID    | Year | From<br>(m) | To<br>(m) | Length<br>(m)* | Au<br>(g/t) | Easting | Northing | Elevation |
|--------------|------|-------------|-----------|----------------|-------------|---------|----------|-----------|
| 15WG-AC-001A | 2015 | 0.5         | 1.5       | 1              | 0.51        | 668802  | 5318479  | 297       |
| 15WG-AC-023A | 2015 | 0           | 0.25      | 0.25           | 0.54        | 669086  | 5314882  | 341       |
| 15WG-AC-123  | 2015 | 4.9         | 5.75      | 0.85           | 0.56        | 668753  | 5315821  | 367       |
| 15WG-AC-125A | 2015 | 2.25        | 3.15      | 0.9            | 0.62        | 668720  | 5315747  | 371       |
| 15WG-AC-032  | 2015 | 0.9         | 1.9       | 1              | 0.65        | 668903  | 5315696  | 354       |
| 15WG-AC-001  | 2015 | 2           | 2.8       | 0.8            | 0.69        | 668804  | 5318477  | 297       |
| 15WG-AC-020  | 2015 | 0           | 0.25      | 0.25           | 0.74        | 669035  | 5314877  | 346       |
| 15WG-AC-022  | 2015 | 1           | 2         | 1              | 0.83        | 669054  | 5314882  | 343       |
| 15WG-AC-034A | 2015 | 0           | 0.35      | 0.35           | 0.85        | 668896  | 5315692  | 354       |
| 15WG-AC-008  | 2015 | 2           | 3         | 1              | 0.86        | 668162  | 5315779  | 348       |
| 15WG-AC-031  | 2015 | 0.7         | 1.25      | 0.55           | 0.94        | 668904  | 5315688  | 353       |
| 15WG-AC-032  | 2015 | 1.9         | 2.35      | 0.45           | 1.15        | 668902  | 5315697  | 354       |
| 15WG-AC-014  | 2015 | 0           | 0.6       | 0.6            | 1.18        | 668226  | 5315952  | 349       |
| Mickelson5   | 2015 | 0.5         | 0.9       | 0.4            | 1.22        | 668883  | 5315690  | 354       |
| 15WG-AC-008  | 2015 | 3           | 4         | 1              | 1.39        | 668161  | 5315780  | 348       |
| 15WG-AC-023B | 2015 | 0           | 0.35      | 0.35           | 1.44        | 669086  | 5314882  | 341       |
| 15WG-AC-022  | 2015 | 0           | 1         | 1              | 1.48        | 669054  | 5314881  | 343       |
| Mickelson7   | 2015 | 0           | 0.85      | 0.85           | 1.48        | 668881  | 5315692  | 353       |
| 15WG-AC-004  | 2015 | 0.75        | 1.5       | 0.75           | 1.55        | 668767  | 5318448  | 300       |
| 15WG-AC-001  | 2015 | 2.8         | 4         | 1.2            | 1.9         | 668805  | 5318476  | 297       |
| 15WG-AC-123  | 2015 | 3           | 4         | 1              | 2.1         | 668754  | 5315820  | 367       |
| 15WG-AC-001  | 2015 | 0           | 1         | 1              | 2.25        | 668803  | 5318479  | 297       |
| 15WG-AC-004  | 2015 | 0           | 0.75      | 0.75           | 2.4         | 668766  | 5318449  | 300       |
| 15WG-AC-012  | 2015 | 10          | 11        | 1              | 3.04        | 668243  | 5315995  | 352       |
| 15WG-AC-008  | 2015 | 4           | 5         | 1              | 3.17        | 668161  | 5315781  | 348       |
| 15WG-AC-031  | 2015 | 1.95        | 2.25      | 0.3            | 4.02        | 668904  | 5315689  | 353       |
| 15WG-AC-125A | 2015 | 0.5         | 1.5       | 1              | 4.37        | 668721  | 5315746  | 371       |
| 15WG-AC-008  | 2015 | 5           | 6         | 1              | 5.16        | 668160  | 5315782  | 348       |
| Mickelson5   | 2015 | 0           | 0.5       | 0.5            | 5.57        | 668883  | 5315690  | 354       |
| 15WG-AC-001  | 2015 | 1           | 2         | 1              | 6.06        | 668804  | 5318478  | 297       |
| 15WG-AC-001A | 2015 | 1.5         | 2.5       | 1              | 7.1         | 668801  | 5318478  | 297       |
| Mickelson3   | 2015 | 0           | 0.85      | 0.85           | 8.18        | 668885  | 5315690  | 354       |
| 15WG-AC-026  | 2015 | 1.1         | 1.5       | 0.4            | 8.77        | 668943  | 5315697  | 352       |
| Mickelson1   | 2015 | 2.1         | 3.45      | 1.35           | 8.85        | 668931  | 5315677  | 350       |
| 15WG-AC-035  | 2015 | 1.5         | 2.2       | 0.7            | 17.1        | 668913  | 5315684  | 352       |
| 15WG-AC-025  | 2015 | 2           | 2.5       | 0.5            | 18.4        | 668765  | 5314698  | 339       |

Table 9-10: Assay Highlights of Channel Samples Collected during the 2015 to 2022 Programs (> 0.5 g/t Au)

| Trench ID    | Year | From<br>(m) | To<br>(m) | Length<br>(m)* | Au<br>(g/t) | Easting | Northing | Elevation |
|--------------|------|-------------|-----------|----------------|-------------|---------|----------|-----------|
| 15WG-AC-035  | 2015 | 0.7         | 1.5       | 0.8            | 20.6        | 668913  | 5315684  | 352       |
| 15WG-JFM-017 | 2015 | 0.17        | 0.51      | 0.34           | 23.7        | 668758  | 5318439  | 301       |
| Mickelson5   | 2015 | 0.9         | 1.6       | 0.7            | 38.2        | 668883  | 5315689  | 354       |
| Mickelson6   | 2015 | 0.55        | 1         | 0.45           | 42.8        | 668882  | 5315690  | 355       |
| 15WG-AC-001A | 2015 | 2.5         | 2.88      | 0.38           | 53.7        | 668801  | 5318478  | 297       |
| 15WG-AC-125A | 2015 | 1.5         | 2.25      | 0.75           | 54.2        | 668720  | 5315747  | 371       |
| 15WG-AC-035  | 2015 | 0           | 0.7       | 0.7            | 69.5        | 668913  | 5315683  | 352       |
| 15WG-AC-026  | 2015 | 1           | 1.1       | 0.1            | 88.1        | 668943  | 5315697  | 352       |
| TR16-8F      | 2016 | 0           | 1         | 1              | 0.5         | 668234  | 5315973  | 316       |
| TR-16-1K     | 2016 | 3           | 4         | 1              | 0.51        | 668134  | 5317388  | 337       |
| TR16-17G     | 2016 | 0           | 1         | 1              | 0.56        | 668267  | 5317339  | 351       |
| TR16-8F      | 2016 | 1           | 2         | 1              | 0.57        | 668233  | 5315974  | 316       |
| TR-16-6K     | 2016 | 1           | 2         | 1              | 0.6         | 667978  | 5315901  | 321       |
| TR-16-4B     | 2016 | 1           | 2         | 1              | 0.64        | 668089  | 5317234  | 347       |
| TR-16-4A     | 2016 | 6           | 7         | 1              | 0.65        | 668092  | 5317233  | 347       |
| TR-16-4A     | 2016 | 8           | 9         | 1              | 0.66        | 668094  | 5317233  | 347       |
| TR-16-3B     | 2016 | 1           | 2         | 1              | 0.71        | 667725  | 5315768  | 307       |
| TR-16-4A     | 2016 | 2           | 3         | 1              | 0.71        | 668088  | 5317233  | 347       |
| TR-16-7S     | 2016 | 0           | 0.5       | 0.5            | 0.71        | 667440  | 5315562  | 303       |
| TR-16-7S     | 2016 | 0.5         | 1         | 0.5            | 0.73        | 667439  | 5315562  | 303       |
| TR-16-1K     | 2016 | 1           | 2         | 1              | 0.76        | 668133  | 5317389  | 337       |
| TR16-17I     | 2016 | 0           | 0.6       | 0.6            | 0.85        | 668277  | 5317335  | 356       |
| TR16-13C     | 2016 | 6           | 7         | 1              | 0.86        | 668010  | 5316963  | 357       |
| TR-16-2N     | 2016 | 4           | 5         | 1              | 0.87        | 668083  | 5317452  | 340       |
| TR-16-4A     | 2016 | 5           | 6         | 1              | 0.91        | 668091  | 5317233  | 347       |
| TR-16-4A     | 2016 | 0           | 1         | 1              | 1.08        | 668086  | 5317233  | 347       |
| TR-16-4B     | 2016 | 2           | 3         | 1              | 1.08        | 668090  | 5317234  | 347       |
| TR16-11K     | 2016 | 3           | 4         | 1              | 1.13        | 668418  | 5316225  | 374       |
| TR16-17H     | 2016 | 0           | 0.8       | 0.8            | 1.22        | 668274  | 5317338  | 355       |
| TR-16-4A     | 2016 | 7           | 8         | 1              | 1.29        | 668093  | 5317233  | 347       |
| TR-16-4A     | 2016 | 4           | 5         | 1              | 1.51        | 668090  | 5317233  | 347       |
| TR-16-2A     | 2016 | 4           | 5         | 1              | 1.76        | 668053  | 5317466  | 334       |
| TR16-8F      | 2016 | 3.2         | 4         | 0.8            | 1.78        | 668231  | 5315975  | 316       |
| TR-16-1M     | 2016 | 0           | 1         | 1              | 2.77        | 668134  | 5317386  | 341       |
| TR-16-2A     | 2016 | 5           | 6         | 1              | 2.83        | 668054  | 5317465  | 334       |
| TR-16-3B     | 2016 | 0           | 1         | 1              | 6.74        | 667724  | 5315768  | 307       |
| TR-16-1N     | 2016 | 0           | 1         | 1              | 6.92        | 668134  | 5317384  | 342       |
| RV-3         | 2017 | 1           | 2         | 1              | 0.56        | 668779  | 5318466  | 302       |

| Trench ID | Year | From<br>(m) | To<br>(m) | Length<br>(m)* | Au<br>(g/t) | Easting | Northing | Elevation |
|-----------|------|-------------|-----------|----------------|-------------|---------|----------|-----------|
| RV-9      | 2017 | 4           | 5         | 1              | 0.59        | 668768  | 5318471  | 305       |
| RV-2      | 2017 | 2           | 3         | 1              | 0.72        | 668775  | 5318463  | 302       |
| RV-4      | 2017 | 5           | 6         | 1              | 0.74        | 668778  | 5318471  | 303       |
| RV-7      | 2017 | 1           | 2         | 1              | 0.74        | 668785  | 5318462  | 300       |
| RV-1      | 2017 | 1           | 2         | 1              | 0.86        | 668774  | 5318462  | 302       |
| RV-9      | 2017 | 3           | 4         | 1              | 1.08        | 668768  | 5318471  | 305       |
| RV-3      | 2017 | 3           | 4         | 1              | 1.13        | 668777  | 5318467  | 302       |
| RV-3      | 2017 | 2           | 3         | 1              | 1.2         | 668778  | 5318466  | 302       |
| RV-6      | 2017 | 0           | 1         | 1              | 1.27        | 668784  | 5318459  | 300       |
| RV-3      | 2017 | 4           | 5         | 1              | 1.29        | 668777  | 5318468  | 302       |
| RV-3      | 2017 | 8           | 9         | 1              | 1.37        | 668774  | 5318471  | 302       |
| RV-1      | 2017 | 3           | 4         | 1              | 1.74        | 668773  | 5318463  | 302       |
| RV-4      | 2017 | 2           | 3         | 1              | 1.93        | 668780  | 5318469  | 303       |
| RV-2      | 2017 | 0           | 1         | 1              | 1.95        | 668777  | 5318462  | 302       |
| RV-5      | 2017 | 2           | 3         | 1              | 1.96        | 668780  | 5318459  | 299       |
| RV-5      | 2017 | 0           | 1         | 1              | 2.03        | 668781  | 5318458  | 299       |
| RV-3      | 2017 | 9           | 10        | 1              | 2.14        | 668773  | 5318472  | 302       |
| RV-2      | 2017 | 4           | 5         | 1              | 2.22        | 668774  | 5318465  | 302       |
| RV-1      | 2017 | 2           | 3         | 1              | 2.38        | 668773  | 5318462  | 302       |
| RV-2      | 2017 | 1           | 2         | 1              | 2.38        | 668776  | 5318462  | 302       |
| RV-1      | 2017 | 4           | 5.6       | 1.6            | 2.76        | 668772  | 5318464  | 302       |
| RV-9      | 2017 | 1           | 2         | 1              | 3.36        | 668770  | 5318469  | 305       |
| RV-7      | 2017 | 2           | 3         | 1              | 3.48        | 668784  | 5318462  | 300       |
| RV-4      | 2017 | 4           | 5         | 1              | 3.79        | 668779  | 5318470  | 303       |
| RV-3      | 2017 | 5           | 6         | 1              | 4.35        | 668776  | 5318469  | 302       |
| RV-1      | 2017 | 0           | 1         | 1              | 4.37        | 668775  | 5318461  | 302       |
| RV-2      | 2017 | 5           | 6         | 1              | 4.48        | 668773  | 5318465  | 302       |
| RV-9      | 2017 | 6           | 7         | 1              | 5.66        | 668766  | 5318473  | 305       |
| RV-2      | 2017 | 3           | 4         | 1              | 5.97        | 668775  | 5318464  | 302       |
| RV-2      | 2017 | 6           | 7         | 1              | 6.82        | 668772  | 5318466  | 302       |
| RV-4      | 2017 | 0           | 1         | 1              | 7.9         | 668781  | 5318467  | 303       |
| RV-6      | 2017 | 4           | 5         | 1              | 8.75        | 668782  | 5318462  | 300       |
| RV-3      | 2017 | 6           | 7         | 1              | 9.75        | 668775  | 5318469  | 302       |
| RV-7      | 2017 | 3           | 4         | 1              | 10.2        | 668783  | 5318463  | 300       |
| RV-6      | 2017 | 3           | 4         | 1              | 12.8        | 668782  | 5318462  | 300       |
| RV-5      | 2017 | 1           | 2         | 1              | 20.3        | 668780  | 5318458  | 299       |
| RV-8      | 2017 | 0           | 1         | 1              | 79.7        | 668785  | 5318462  | 300       |
| RV-7      | 2017 | 0           | 1         | 1              | 88.5        | 668785  | 5318461  | 300       |

| Trench ID     | Year | From<br>(m) | To<br>(m) | Length<br>(m)* | Au<br>(g/t) | Easting | Northing | Elevation |
|---------------|------|-------------|-----------|----------------|-------------|---------|----------|-----------|
| CG-5          | 2018 | 0.78        | 1.23      | 0.45           | 3.19        | 669575  | 5317949  | 362       |
| CG-5          | 2018 | 1.23        | 2.23      | 1              | 3.67        | 669575  | 5317948  | 362       |
| CG-2          | 2018 | 1.6         | 2.02      | 0.42           | 9.58        | 669578  | 5317949  | 362       |
| CG-3          | 2018 | 0           | 0.31      | 0.31           | 27          | 669578  | 5317949  | 362       |
| Cooper-6-1    | 2019 | 0.92        | 1.58      | 0.66           | 0.54        | 669290  | 5318197  | 375       |
| JSZ_South3B-6 | 2019 | 0           | 1         | 1              | 0.59        | 667657  | 5314137  | 343       |
| Cooper-10-2   | 2019 | 0           | 0.67      | 0.67           | 0.64        | 669267  | 5318296  | 362       |
| Cooper-5a-1   | 2019 | 3           | 4.1       | 1.1            | 0.66        | 669854  | 5317824  | 358       |
| Trench-5B-1   | 2019 | 0.6         | 1.65      | 1.05           | 0.86        | 667960  | 5313614  | 347       |
| Cooper-6-1    | 2019 | 0           | 0.92      | 0.92           | 1.04        | 669291  | 5318197  | 375       |
| Cooper-3-1    | 2019 | 4.8         | 5.7       | 0.9            | 1.13        | 669773  | 5317860  | 359       |
| JSZ_South3B-6 | 2019 | 2           | 3         | 1              | 1.48        | 667658  | 5314135  | 343       |
| Trench-5A-5   | 2019 | 0           | 0.9       | 0.9            | 2.01        | 667949  | 5313629  | 352       |
| Cooper-2-4    | 2019 | 3.93        | 4.54      | 0.61           | 2.51        | 669634  | 5317922  | 362       |
| JSZ_South3B-5 | 2019 | 1           | 1.85      | 0.85           | 2.56        | 667650  | 5314141  | 344       |
| Cooper-3-1    | 2019 | 1.8         | 2.85      | 1.05           | 2.58        | 669771  | 5317857  | 359       |
| Cooper-5b-3   | 2019 | 0           | 1.4       | 1.4            | 3.23        | 669841  | 5317814  | 358       |
| Cooper-10-2   | 2019 | 1.49        | 2.99      | 1.5            | 3.57        | 669266  | 5318294  | 362       |
| Trench-5A-4   | 2019 | 2.1         | 3.1       | 1              | 3.75        | 667948  | 5313629  | 353       |
| Ganley-1-2    | 2019 | 1.8         | 2.9       | 1.1            | 6.29        | 669549  | 5318054  | 370       |
| Trench-2-1    | 2019 | 1.5         | 2.55      | 1.05           | 7.56        | 668035  | 5313441  | 345       |
| Cooper-3-1    | 2019 | 5.7         | 7.2       | 1.5            | 8.01        | 669774  | 5317861  | 359       |
| Cooper-11-2   | 2019 | 1.5         | 1.9       | 0.4            | 12.8        | 669251  | 5318067  | 366       |
| Cooper-5b-2   | 2019 | 0           | 1.4       | 1.4            | 14.1        | 669838  | 5317817  | 357       |
| Trench-5B-1   | 2019 | 0           | 0.6       | 0.6            | 16.49       | 667959  | 5313614  | 347       |
| CG-1-1        | 2019 | 1.5         | 2         | 0.5            | 26.9        | 669359  | 5318111  | 379       |
| CG-1-2        | 2019 | 1.9         | 2.8       | 0.9            | 28.5        | 669364  | 5318104  | 379       |
| Cooper-3-1    | 2019 | 2.85        | 3.9       | 1.05           | 34.1        | 669772  | 5317858  | 359       |
| CG-1-2        | 2019 | 1.4         | 1.9       | 0.5            | 42.8        | 669364  | 5318105  | 379       |
| Minto-08D     | 2020 | 0.7         | 1.3       | 0.6            | 0.52        | 668270  | 5315157  | 345       |
| Minto-01F     | 2020 | 0           | 74        | 74             | 0.52        | 668360  | 5314936  | 349       |
| Minto-05G     | 2020 | 0           | 1.2       | 1.2            | 0.55        | 668869  | 5314095  | 367       |
| Minto-04I     | 2020 | 0           | 1.2       | 1.2            | 0.56        | 668924  | 5314211  | 360       |
| Minto-08A     | 2020 | 1.25        | 2.05      | 0.8            | 0.68        | 668241  | 5315142  | 344       |
| Mickelson-1D  | 2020 | 1.5         | 2.2       | 0.7            | 0.69        | 668885  | 5315691  | 353       |
| Minto-08A     | 2020 | 2.05        | 2.8       | 0.75           | 0.79        | 668241  | 5315142  | 344       |
| Trench-7A-4   | 2020 | 1.75        | 2.75      | 1              | 0.84        | 667977  | 5313541  | 348       |
| Mickelson-1D  | 2020 | 0.8         | 1.5       | 0.7            | 0.85        | 668885  | 5315692  | 353       |

| Trench ID    | Year | From<br>(m) | To<br>(m) | Length<br>(m)* | Au<br>(g/t) | Easting | Northing | Elevation |
|--------------|------|-------------|-----------|----------------|-------------|---------|----------|-----------|
| Minto-04L    | 2020 | 0           | 1.5       | 1.5            | 0.91        | 668944  | 5314222  | 360       |
| Minto-04O    | 2020 | 1.2         | 2.4       | 1.2            | 0.99        | 668946  | 5314224  | 360       |
| Minto-08B    | 2020 | 0           | 1         | 1              | 1.02        | 668243  | 5315141  | 343       |
| Mickelson-1F | 2020 | 0           | 1.3       | 1.3            | 1.06        | 668902  | 5315690  | 352       |
| Mickelson-1I | 2020 | 1.05        | 2.15      | 1.1            | 1.4         | 668909  | 5315684  | 352       |
| Minto-05H    | 2020 | 0           | 1.3       | 1.3            | 1.46        | 668870  | 5314096  | 367       |
| Mickelson-1B | 2020 | 0           | 0.75      | 0.75           | 1.89        | 668887  | 5315695  | 353       |
| Mickelson-1G | 2020 | 0           | 0.45      | 0.45           | 2.97        | 668902  | 5315689  | 352       |
| Minto-04M    | 2020 | 0           | 1.4       | 1.4            | 4.04        | 668947  | 5314226  | 360       |
| Mickelson-1C | 2020 | 0           | 1.05      | 1.05           | 10.2        | 668887  | 5315695  | 353       |
| Mickelson-1D | 2020 | 0           | 0.8       | 0.8            | 16.35       | 668885  | 5315693  | 353       |
| Mickelson-1J | 2020 | 0           | 1.1       | 1.1            | 21.31       | 668910  | 5315683  | 351       |
| Mickelson-1L | 2020 | 0           | 0.8       | 0.8            | 25.78       | 668914  | 5315683  | 351       |
| Mickelson-1K | 2020 | 0           | 1.15      | 1.15           | 28.84       | 668912  | 5315684  | 351       |
| Mickelson-1E | 2020 | 0           | 0.75      | 0.75           | 39.88       | 668896  | 5315690  | 353       |
| WE-21-001-6  | 2021 | 2           | 3         | 1              | 4.74        | 668418  | 5312327  | 294       |
| WE-21-001-8  | 2021 | 4           | 5         | 1              | 4.64        | 668411  | 5312322  | 289       |
| WE-21-001-8  | 2021 | 5           | 5.7       | 0.7            | 3.44        | 668411  | 5312321  | 289       |
| WE-21-001-2  | 2021 | 1           | 2         | 1              | 3.17        | 668425  | 5312342  | 289       |
| WE-21-001-1  | 2021 | 2           | 3         | 1              | 2.46        | 668426  | 5312345  | 292       |
| WE-21-001-7  | 2021 | 2           | 3         | 1              | 2.35        | 668414  | 5312323  | 292       |
| WE-21-001-7  | 2021 | 4           | 4.7       | 0.7            | 2.18        | 668415  | 5312322  | 292       |
| WE-21-001-6  | 2021 | 3           | 4         | 1              | 2.13        | 668419  | 5312327  | 294       |
| WE-21-001-2  | 2021 | 2           | 3         | 1              | 1.29        | 668425  | 5312342  | 289       |
| WE-21-001-7  | 2021 | 3           | 4         | 1              | 1.06        | 668414  | 5312322  | 292       |
| WE-21-001-8  | 2021 | 1           | 2         | 1              | 0.89        | 668409  | 5312324  | 289       |
| WE-21-001-5  | 2021 | 0           | 1         | 1              | 0.731       | 668419  | 5312336  | 293       |
| WE-21-001-4  | 2021 | 0           | 1         | 1              | 0.637       | 668420  | 5312334  | 290       |

Note: \*True width cannot be calculated due to surface irregularities along the series of channel samples.



Figure 9-13: Red Pine Wawa Gold Project Trenching and Channel Sampling Locations from 2015 to 2022 showing Gold Grade

# 9.4 Historical Holes Sampling Program (2016, 2018)

An examination of the historical sampling pattern indicated that, in the mineralized structures of the project, many intervals of potentially mineralized rocks were left un-sampled by the previous operators. A cursory analysis of the impact of these un-sampled intervals suggested that they have a non-negligible impact on resource estimation in the Surluga Deposit as these unsampled intervals, being assigned grades close to 0 g/t, result in considerable dilution. To try to mitigate the impacts of the selective sampling patterns of the previous operators in the mineralized structures of the project, Red Pine was able to recover approximately 40,481 m of previously drilled core that had been stored on site. The details of the program are listed in Table 9-11.

The historical core sampled by Red Pine as part of the 2016 and 2018 sampling program corresponds to intervals left unsampled by the previous operators on the project. Of the 40,481 m of historical core available at the beginning of the sampling program, in two separate phases completed in 2016 and 2018, Red Pine took 10,627 assays from 21,416 m of previously un-sampled drill core that was distributed in 525 drill holes. Historical hole details and year sampled is detailed in Table 9-12 and locations are in Figure 9-14. Table 9-13 highlights assay results of historical drill hole sampling from previously unsampled drill core with intersections greater than 2.0 g/t Au. These results show that gold mineralization is present in some of the intervals left unsampled by the previous operators. True width has not been calculated and intercept is reported as drilled length. Figure 9-15 shows the location of the intersections and gold grade. In total, 130 surface (holes starting with "S") and 395 underground drill holes (holes starting with "U") were processed. Included with the assaying, 705 CRMs were processed to ensure quality control.

During the sampling program, the core was visually inspected and logged based on the field geologist's descriptions. The information was then input into a Microsoft Excel<sup>™</sup> spreadsheet for our records. The incorporation of a variety of analytical methods was utilized to best describe the lithological units. These included testing for magnetism with a magnet, reactivity with 10% hydrochloric acid (HCL), scratch testing with a tungsten carbide scribe to estimate hardness, magnetic susceptibility ("MagSus") measurements, portable X-ray Fluorescence (XRF) readings, Short Wave Infrared Reflectance ("SWIR") data points, colour, texture, structure, grain size, pervasive alteration, and contact definitions. These components were then used to create a lithological description of the core from intervals of the drill hole that could be recovered. This log was further subdivided by lithologies with description of alteration and mineralization.

Alteration and rock type identification were supported by spot measurements using a portable XRF if uncertainty existed. The portable XRF units used by the company are programmed with predefined element ratios that characterize favourability for gold (white mica intensity ratio derived from internal work) and the nature of the host rocks (Zr/TiO<sub>2</sub>). SWIR and MagSus measurements were not collected during the 2018 historical holes sampling program.

### Table 9-11: Attributes of the Historical Core Sampling Program

| Program Details                     | Value  |
|-------------------------------------|--------|
| Total number of holes sampled       | 525    |
| Number of holes sampled 2016        | 158    |
| Number of holes sampled 2018        | 367    |
| Number of surface holes sampled     | 130    |
| Number of underground holes sampled | 395    |
| Total meterage covered (m)          | 40,481 |
| Total meterage sampled (m)          | 21,416 |
| Total number of assays taken        | 10,627 |
| Total number of CRM samples         | 705    |

### Table 9-12: Historical Holes Sampled by Red Pine during the 2016 and 2018 Sampling Programs

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | X      | Y       | Z     | AZ | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|----|-----|-------|
| S145    | Surluga | 1969            | 2018            | 667775 | 5315738 | 345.4 | 0  | -90 | 76    |
| S156    | Pango   | 1969            | 2018            | 668139 | 5316198 | 385.2 | 0  | -90 | 199   |
| S160    | Pango   | 1969            | 2018            | 668722 | 5318072 | 301.4 | 0  | -90 | 156   |
| S161    | Pango   | 1969            | 2018            | 668781 | 5318131 | 302.3 | 0  | -90 | 196   |
| S162    | Pango   | 1969            | 2018            | 668204 | 5316265 | 377.6 | 0  | -90 | 225   |
| S164    | Pango   | 1969            | 2018            | 668107 | 5316316 | 376.7 | 0  | -90 | 148   |
| S168    | Pango   | 1969            | 2018            | 667716 | 5315611 | 345.1 | 0  | -90 | 96    |
| S170    | Pango   | 1969            | 2018            | 668097 | 5316396 | 354.6 | 0  | -90 | 156   |
| S172    | Pango   | 1969            | 2018            | 668267 | 5316454 | 381.3 | 0  | -90 | 203   |
| S173    | Pango   | 1969            | 2018            | 668290 | 5316498 | 383.7 | 0  | -90 | 233   |
| S174    | Pango   | 1969            | 2018            | 668328 | 5316572 | 385   | 0  | -90 | 216   |
| S174W1  | Pango   | 1969            | 2018            | 668328 | 5316572 | 220.1 | 0  | -90 | 172   |
| S174W2  | Pango   | 1969            | 2018            | 668328 | 5316572 | 224.3 | 0  | -90 | 207   |
| S175    | Pango   | 1969            | 2018            | 668466 | 5316350 | 377.7 | 0  | -90 | 310   |
| S175W   | Pango   | 1969            | 2018            | 668466 | 5316350 | 377.7 | 0  | -90 | 307   |
| S176    | Pango   | 1969            | 2018            | 668482 | 5316441 | 380.6 | 0  | -90 | 329   |
| S177    | Pango   | 1969            | 2018            | 668171 | 5316149 | 369.8 | 0  | -90 | 229   |
| S178    | Pango   | 1969            | 2018            | 668246 | 5315532 | 363.1 | 0  | -90 | 189   |
| S180    | Pango   | 1969            | 2018            | 668167 | 5315653 | 345.8 | 0  | -90 | 147   |
| S181    | Pango   | 1969            | 2018            | 668270 | 5315487 | 352.5 | 0  | -90 | 155   |
| S182    | Pango   | 1969            | 2018            | 668235 | 5315466 | 352   | 0  | -90 | 151   |
| S183    | Pango   | 1969            | 2018            | 668152 | 5315693 | 345.4 | 0  | -90 | 126   |
| S184c1  | Pango   | 1969            | 2018            | 669580 | 5318025 | 368.4 | 0  | -90 | 85    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x        | Y       | Z     | AZ | Dip | Depth |
|---------|---------|-----------------|-----------------|----------|---------|-------|----|-----|-------|
| S185c2  | Pango   | 1969            | 2018            | 669552   | 5318036 | 367.4 | 0  | -90 | 114   |
| S186c3  | Pango   | 1969            | 2018            | 669532   | 5318061 | 370.9 | 0  | -90 | 80    |
| S187c4  | Pango   | 1969            | 2018            | 669608   | 5318007 | 362.2 | 0  | -90 | 77    |
| S188c5  | Pango   | 1969            | 2018            | 669641   | 5317989 | 355.9 | 0  | -90 | 91    |
| S191    | Citadel | 1987            | 2018            | 667877   | 5315377 | 345.9 | 0  | -90 | 79    |
| S192    | Citadel | 1987            | 2018            | 668281   | 5316521 | 384   | 0  | -90 | 201   |
| S194    | Citadel | 1987            | 2018            | 668304   | 5316584 | 380   | 0  | -90 | 201   |
| S195    | Citadel | 1987            | 2018            | 668294   | 5315565 | 371   | 0  | -90 | 237   |
| S196    | Citadel | 1987            | 2018            | 668232   | 5315670 | 353.6 | 0  | -90 | 244   |
| S197    | Citadel | 1987            | 2018            | 668179   | 5315769 | 347.6 | 0  | -90 | 319   |
| S198    | Citadel | 1987            | 2018            | 668034   | 5315887 | 358.5 | 0  | -90 | 174   |
| S199    | Citadel | 1987            | 2018            | 667991   | 5315972 | 374.3 | 0  | -90 | 176   |
| S200    | Citadel | 1987            | 2018            | 667945   | 5316022 | 375.8 | 0  | -90 | 130   |
| S201    | Citadel | 1987            | 2018            | 668193   | 5316161 | 370.6 | 0  | -90 | 229   |
| S202    | Citadel | 1987            | 2018            | 668226   | 5316223 | 370.4 | 0  | -90 | 229   |
| S203    | Citadel | 1987            | 2018            | 668180   | 5316212 | 382.7 | 0  | -90 | 229   |
| S204    | Citadel | 1987            | 2018            | 668161   | 5316251 | 381.1 | 0  | -90 | 229   |
| S205    | Citadel | 1987            | 2018            | 668262   | 5316265 | 379.8 | 0  | -90 | 225   |
| S206    | Citadel | 1987            | 2018            | 668225   | 5316280 | 375.8 | 0  | -90 | 229   |
| S207    | Citadel | 1987            | 2018            | 668187   | 5316290 | 378.8 | 0  | -90 | 231   |
| S208    | Citadel | 1987            | 2018            | 668287   | 5316320 | 375   | 0  | -90 | 229   |
| S209    | Citadel | 1987            | 2018            | 668241   | 5316329 | 372.7 | 0  | -90 | 229   |
| S210    | Citadel | 1987            | 2018            | 668190   | 5316340 | 372.5 | 0  | -90 | 213   |
| S211    | Citadel | 1987            | 2018            | 668279   | 5316376 | 370.4 | 0  | -90 | 216   |
| S212    | Citadel | 1987            | 2018            | 668249   | 5316412 | 372.3 | 0  | -90 | 214   |
| S213    | Citadel | 1987            | 2016            | 668328.8 | 5316692 | 376.9 | 0  | -90 | 182   |
| S214    | Citadel | 1987            | 2016            | 668324   | 5316378 | 375.3 | 0  | -90 | 246   |
| S215    | Citadel | 1987            | 2016            | 668219   | 5316466 | 378.8 | 0  | -90 | 201   |
| S216    | Citadel | 1987            | 2018            | 668335   | 5316638 | 367.2 | 0  | -90 | 197   |
| S217    | Citadel | 1987            | 2018            | 669550   | 5318080 | 373.4 | 0  | -90 | 123   |
| S218    | Citadel | 1987            | 2018            | 669579   | 5318073 | 376.1 | 0  | -90 | 123   |
| S219    | Citadel | 1987            | 2018            | 669593   | 5318052 | 368.2 | 0  | -90 | 123   |
| S220    | Citadel | 1987            | 2018            | 669629   | 5318040 | 369.1 | 0  | -90 | 122   |
| S221    | Citadel | 1987            | 2018            | 669659   | 5318026 | 364.1 | 0  | -90 | 126   |
| S222    | Citadel | 1987            | 2018            | 669621   | 5317972 | 363   | 0  | -90 | 62    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|----|-----|-------|
| S223    | Citadel | 1987            | 2018            | 669595 | 5317989 | 357.5 | 0  | -90 | 49    |
| S224A   | Citadel | 1987            | 2018            | 669566 | 5318007 | 367.5 | 0  | -90 | 62    |
| S225    | Citadel | 1987            | 2018            | 669542 | 5318021 | 366.3 | 0  | -90 | 47    |
| S226    | Citadel | 1987            | 2018            | 669517 | 5318038 | 366.9 | 0  | -90 | 46    |
| S227    | Citadel | 1987            | 2016            | 667901 | 5316086 | 360.6 | 0  | -90 | 63    |
| S228    | Citadel | 1987            | 2018            | 667951 | 5316086 | 372.5 | 0  | -90 | 124   |
| S229    | Citadel | 1987            | 2018            | 667981 | 5316086 | 380   | 0  | -90 | 139   |
| S230    | Citadel | 1987            | 2018            | 668038 | 5316098 | 383.7 | 0  | -90 | 197   |
| S231    | Citadel | 1987            | 2018            | 668100 | 5316098 | 379.5 | 0  | -90 | 206   |
| S232    | Citadel | 1987            | 2018            | 668160 | 5316097 | 366.2 | 0  | -90 | 229   |
| S233    | Citadel | 1987            | 2018            | 668165 | 5315986 | 363.8 | 0  | -90 | 276   |
| S234    | Citadel | 1987            | 2018            | 668111 | 5315975 | 367.7 | 0  | -90 | 252   |
| S235    | Citadel | 1987            | 2016            | 668040 | 5315973 | 374.2 | 0  | -90 | 222   |
| S236    | Citadel | 1987            | 2018            | 667984 | 5316156 | 371.1 | 0  | -90 | 124   |
| S237    | Citadel | 1987            | 2016            | 667952 | 5315966 | 369.6 | 0  | -90 | 155   |
| S239    | Citadel | 1987            | 2016            | 667897 | 5315965 | 370.8 | 0  | -90 | 124   |
| S240    | Citadel | 1987            | 2018            | 668022 | 5316338 | 372.7 | 0  | -90 | 76    |
| S241    | Citadel | 1987            | 2018            | 668053 | 5316335 | 371   | 0  | -90 | 110   |
| S242    | Citadel | 1987            | 2018            | 667866 | 5315830 | 355.5 | 0  | -90 | 139   |
| S244    | Citadel | 1987            | 2016            | 667989 | 5315839 | 345.5 | 0  | -90 | 200   |
| S246    | Citadel | 1987            | 2018            | 668107 | 5315853 | 345.6 | 0  | -90 | 276   |
| S247    | Citadel | 1987            | 2016            | 668169 | 5315848 | 351.4 | 0  | -90 | 322   |
| S252    | Citadel | 1987            | 2018            | 668064 | 5315732 | 345.4 | 0  | -90 | 261   |
| S253    | Citadel | 1987            | 2018            | 667997 | 5315730 | 345.4 | 0  | -90 | 222   |
| S255    | Citadel | 1987            | 2016            | 667869 | 5315714 | 345.4 | 0  | -90 | 158   |
| S258    | Citadel | 1987            | 2018            | 668037 | 5315625 | 345.5 | 0  | -90 | 313   |
| S259    | Citadel | 1987            | 2018            | 667871 | 5316035 | 357.5 | 0  | -90 | 76    |
| S260    | Citadel | 1987            | 2016            | 667857 | 5316019 | 356.1 | 0  | -90 | 76    |
| S261    | Citadel | 1987            | 2018            | 668300 | 5316677 | 350.6 | 0  | -90 | 170   |
| S263    | Citadel | 1987            | 2018            | 668003 | 5316216 | 376.8 | 0  | -90 | 106   |
| S264    | Citadel | 1987            | 2018            | 668054 | 5316214 | 379.6 | 0  | -90 | 155   |
| S265    | Citadel | 1987            | 2018            | 668081 | 5316279 | 380.2 | 0  | -90 | 179   |
| S266    | Citadel | 1987            | 2018            | 668263 | 5316646 | 353.6 | 0  | -90 | 161   |
| S267    | Citadel | 1987            | 2018            | 668263 | 5316590 | 374.1 | 0  | -90 | 146   |
| S268    | Citadel | 1987            | 2018            | 668220 | 5316633 | 357.3 | 0  | -90 | 150   |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| S269    | Citadel | 1987            | 2018            | 668175 | 5316651 | 353.2 | 0   | -90 | 109   |
| S272    | Citadel | 1987            | 2016            | 668128 | 5316160 | 378   | 0   | -90 | 207   |
| S274    | Citadel | 1987            | 2016            | 668161 | 5316040 | 368.3 | 0   | -90 | 249   |
| S276    | Citadel | 1987            | 2016            | 668193 | 5316110 | 362.2 | 0   | -90 | 262   |
| S277    | Citadel | 1987            | 2016            | 668087 | 5316038 | 378.6 | 0   | -90 | 219   |
| S278    | Citadel | 1987            | 2018            | 668060 | 5316034 | 381.8 | 0   | -90 | 201   |
| S279    | Citadel | 1987            | 2018            | 668019 | 5316032 | 380.9 | 0   | -90 | 194   |
| S280    | Citadel | 1987            | 2018            | 668134 | 5315978 | 364.8 | 0   | -90 | 262   |
| S281    | Citadel | 1987            | 2016            | 668074 | 5315973 | 374.3 | 0   | -90 | 216   |
| S282    | Citadel | 1987            | 2016            | 668106 | 5315913 | 353.4 | 0   | -90 | 262   |
| S283    | Citadel | 1987            | 2018            | 668139 | 5315912 | 346.6 | 0   | -90 | 277   |
| S284    | Citadel | 1987            | 2018            | 668169 | 5315918 | 345.4 | 0   | -90 | 289   |
| S285    | Citadel | 1987            | 2018            | 668052 | 5316159 | 378.3 | 0   | -90 | 167   |
| S286    | Citadel | 1987            | 2018            | 668090 | 5316159 | 381   | 0   | -90 | 191   |
| S287    | Citadel | 1987            | 2018            | 667972 | 5315897 | 356.1 | 0   | -90 | 169   |
| S288    | Citadel | 1987            | 2018            | 668008 | 5315784 | 345.4 | 0   | -90 | 225   |
| S289    | Citadel | 1987            | 2018            | 668038 | 5315788 | 345.5 | 0   | -90 | 252   |
| S290    | Citadel | 1987            | 2018            | 668078 | 5315790 | 345.4 | 0   | -90 | 289   |
| S291    | Citadel | 1987            | 2018            | 668206 | 5315373 | 345.6 | 240 | -45 | 91    |
| S292    | Citadel | 1987            | 2018            | 668262 | 5315256 | 349.4 | 240 | -45 | 91    |
| S293    | Citadel | 1987            | 2018            | 668297 | 5315132 | 342.1 | 240 | -45 | 97    |
| S300    | Citadel | 1988            | 2018            | 667987 | 5315200 | 346.5 | 261 | -45 | 97    |
| S301    | Citadel | 1988            | 2018            | 667922 | 5314961 | 345.3 | 263 | -45 | 97    |
| S302    | Citadel | 1988            | 2018            | 667868 | 5314632 | 340.8 | 260 | -45 | 139   |
| S303    | Citadel | 1988            | 2018            | 667928 | 5314798 | 343.1 | 267 | -45 | 97    |
| S304    | Citadel | 1988            | 2018            | 667946 | 5315096 | 346.9 | 269 | -45 | 95    |
| S305    | Citadel | 1988            | 2018            | 667882 | 5314366 | 345.4 | 263 | -45 | 185   |
| S306    | Citadel | 1988            | 2018            | 667988 | 5315200 | 346.6 | 269 | -60 | 161   |
| S307    | Citadel | 1988            | 2018            | 668252 | 5315868 | 350.6 | 0   | -90 | 398   |
| S308    | Citadel | 1988            | 2016            | 668240 | 5315920 | 348.6 | 0   | -90 | 353   |
| S309    | Citadel | 1988            | 2016            | 668239 | 5315920 | 348.6 | 294 | -60 | 91    |
| S310    | Citadel | 1988            | 2018            | 668206 | 5315864 | 351.4 | 0   | -90 | 350   |
| S311    | Citadel | 1988            | 2018            | 668177 | 5315795 | 349.7 | 0   | -90 | 334   |
| S312    | Citadel | 1988            | 2018            | 668131 | 5315737 | 345.5 | 0   | -90 | 340   |
| S313    | Citadel | 1988            | 2018            | 668131 | 5315737 | 345.5 | 294 | -90 | 91    |

| Hole ID  | Company  | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ    | Dip | Depth |
|----------|----------|-----------------|-----------------|--------|---------|-------|-------|-----|-------|
| S314     | Citadel  | 1988            | 2018            | 668193 | 5315645 | 351.2 | 294   | -70 | 361   |
| S316     | Citadel  | 1988            | 2018            | 668238 | 5315795 | 350.4 | 0     | -90 | 383   |
| U0002L6  | Pursides | 1975            | 2018            | 668437 | 5316464 | 116.3 | 292.5 | -1  | 12    |
| U0011AL6 | Pursides | 1975            | 2018            | 668388 | 5316409 | 140.1 | 121   | 0   | 28    |
| U0014L6  | Pursides | 1975            | 2018            | 668387 | 5316419 | 141.6 | 298   | 0   | 8     |
| U0019L6  | Pursides | 1975            | 2018            | 668382 | 5316397 | 139.5 | 113   | 2   | 30    |
| U0020L6  | Pursides | 1975            | 2018            | 668380 | 5316397 | 139.4 | 293   | -2  | 10    |
| U0026L6  | Pursides | 1975            | 2018            | 668378 | 5316373 | 131.6 | 295   | 0   | 14    |
| U0265L3  | Surluga  | 1968            | 2018            | 668341 | 5317044 | 228.9 | 124   | -20 | 50    |
| U0324L3  | Pango    | 1969            | 2018            | 668330 | 5316804 | 228.6 | 9     | -45 | 45    |
| U0348L5  | Pango    | 1969            | 2016            | 668463 | 5316646 | 152.9 | 143   | -52 | 93    |
| U0351L5  | Pango    | 1969            | 2018            | 668462 | 5316648 | 152.9 | 85    | -51 | 77    |
| U0352L5  | Pango    | 1969            | 2016            | 668462 | 5316647 | 152.8 | 182   | -54 | 79    |
| U0353L3  | Pango?   | 1969            | 2018            | 668316 | 5316862 | 228.1 | 110   | -67 | 30    |
| U0353L5  | Pango    | 1969            | 2016            | 668460 | 5316647 | 152.8 | 263.5 | -35 | 59    |
| U0354L5  | Pango    | 1969            | 2016            | 668451 | 5316656 | 152.7 | 268   | -52 | 50    |
| U0355L5  | Pango    | 1969            | 2016            | 668452 | 5316656 | 152.9 | 268   | -71 | 49    |
| U0356L5  | Pango    | 1969            | 2016            | 668452 | 5316657 | 153   | 359   | -55 | 58    |
| U0357L5  | Pango    | 1969            | 2016            | 668452 | 5316657 | 153.2 | 0     | -90 | 47    |
| U0360L5  | Pango    | 1969            | 2018            | 668380 | 5316441 | 154.4 | 285   | 0   | 33    |
| U0361L5  | Pango    | 1969            | 2018            | 668373 | 5316411 | 154.6 | 282   | 0   | 33    |
| U0363L5  | Pango    | 1969            | 2018            | 668358 | 5316352 | 154.9 | 287   | 0   | 59    |
| U0431L3  | Pango    | 1969            | 2018            | 668443 | 5317220 | 230.4 | 93.5  | 40  | 23    |
| U0433L3  | Pango    | 1969            | 2018            | 668442 | 5317251 | 230.7 | 86    | 36  | 31    |
| U0443L3  | Pango    | 1969            | 2018            | 668341 | 5316864 | 190   | 157.5 | 36  | 38    |
| U0446L3  | Pango    | 1969            | 2018            | 668342 | 5316865 | 190.6 | 63    | 36  | 34    |
| U0447L3  | Pango    | 1969            | 2018            | 668436 | 5317312 | 230.5 | 271   | 0   | 62    |
| U0448L3  | Pango    | 1969            | 2018            | 668440 | 5317312 | 231.1 | 92.5  | 41  | 34    |
| U0450L3  | Pango    | 1969            | 2018            | 668376 | 5316851 | 190.2 | 95    | 30  | 18    |
| U0451L5  | Pango    | 1969            | 2018            | 668399 | 5316523 | 154.3 | 286   | 0   | 36    |
| U0452L3  | Pango    | 1969            | 2018            | 668374 | 5316851 | 190.2 | 0     | 90  | 11    |
| U0452L5  | Pango    | 1969            | 2018            | 668400 | 5316522 | 153.4 | 284   | -62 | 29    |
| U0453L5  | Pango    | 1969            | 2018            | 668401 | 5316522 | 154.3 | 105   | 0   | 36    |
| U0454L5  | Pango    | 1969            | 2018            | 668399 | 5316515 | 154.3 | 287   | 0   | 26    |
| U0455L5  | Pango    | 1969            | 2018            | 668400 | 5316515 | 153.4 | 287   | -66 | 25    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | X      | Y       | Z     | AZ    | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|-------|-----|-------|
| U0456L5 | Pango   | 1969            | 2018            | 668402 | 5316514 | 154.3 | 107   | 0   | 23    |
| U0457L5 | Pango   | 1969            | 2018            | 668399 | 5316507 | 154.4 | 284   | 0   | 32    |
| U0458L5 | Pango   | 1969            | 2018            | 668399 | 5316507 | 153.4 | 284   | -60 | 24    |
| U0459L5 | Pango   | 1969            | 2018            | 668401 | 5316506 | 154.4 | 106   | 0   | 29    |
| U0460L5 | Pango   | 1969            | 2018            | 668397 | 5316500 | 153.5 | 282   | -56 | 30    |
| U0461L5 | Pango   | 1969            | 2018            | 668399 | 5316499 | 154.3 | 105   | 0   | 29    |
| U0465L5 | Pango   | 1969            | 2018            | 668393 | 5316485 | 154.4 | 288   | 0   | 32    |
| U0466L5 | Pango   | 1969            | 2018            | 668394 | 5316485 | 153.5 | 286.5 | -60 | 26    |
| U0469L5 | Pango   | 1969            | 2018            | 668392 | 5316477 | 153.5 | 288   | -61 | 24    |
| U0471L5 | Pango   | 1969            | 2018            | 668390 | 5316470 | 153.5 | 288   | -60 | 20    |
| U0475L5 | Pango   | 1969            | 2018            | 668391 | 5316462 | 154.4 | 107   | 0   | 32    |
| U0478L5 | Pango   | 1969            | 2018            | 668389 | 5316454 | 154.9 | 107   | 0   | 24    |
| U0479L5 | Pango   | 1969            | 2018            | 668384 | 5316448 | 154.6 | 286   | 0   | 20    |
| U0484L5 | Pango   | 1969            | 2018            | 668381 | 5316433 | 154.5 | 285   | 0   | 39    |
| U0485L5 | Pango   | 1969            | 2018            | 668381 | 5316433 | 153.5 | 285   | -60 | 31    |
| U0488L5 | Pango   | 1969            | 2018            | 668380 | 5316425 | 153.5 | 286   | -60 | 29    |
| U0490L5 | Pango   | 1969            | 2018            | 668377 | 5316418 | 154.5 | 283   | 0   | 35    |
| U0491L5 | Pango   | 1969            | 2018            | 668378 | 5316418 | 153.6 | 286   | -65 | 27    |
| U0492L5 | Pango   | 1969            | 2018            | 668380 | 5316418 | 154.5 | 106   | 0   | 26    |
| U0493L5 | Pango   | 1969            | 2018            | 668376 | 5316410 | 153.6 | 285   | -58 | 31    |
| U0494L5 | Pango   | 1969            | 2016            | 668378 | 5316410 | 154.4 | 103   | 0   | 23    |
| U0495L5 | Pango   | 1969            | 2018            | 668374 | 5316403 | 154.5 | 286   | 0   | 40    |
| U0499L5 | Pango   | 1969            | 2018            | 668373 | 5316396 | 153.7 | 286   | -57 | 17    |
| U0503L5 | Pango   | 1969            | 2018            | 668373 | 5316388 | 154.6 | 104   | 0   | 33    |
| U0506L5 | Pango   | 1969            | 2018            | 668367 | 5316374 | 154.5 | 287   | 0   | 42    |
| U0507L5 | Pango   | 1969            | 2018            | 668367 | 5316374 | 153.8 | 284   | -57 | 22    |
| U0508L5 | Pango   | 1969            | 2018            | 668369 | 5316373 | 154.5 | 103   | 0   | 23    |
| U0509L5 | Pango   | 1969            | 2018            | 668365 | 5316366 | 154.8 | 285   | 0   | 48    |
| U0511L5 | Pango   | 1969            | 2018            | 668367 | 5316366 | 154.8 | 105   | 0   | 37    |
| U0512L5 | Pango   | 1969            | 2018            | 668363 | 5316359 | 155   | 288   | 0   | 55    |
| U0513L5 | Pango   | 1969            | 2018            | 668364 | 5316359 | 153.9 | 288   | -60 | 27    |
| U0514L5 | Pango   | 1969            | 2018            | 668365 | 5316358 | 155   | 104   | 0   | 28    |
| U0515L5 | Pango   | 1969            | 2018            | 668364 | 5316351 | 154.9 | 103   | 0   | 13    |
| U0518L5 | Pango   | 1969            | 2018            | 668362 | 5316344 | 154.9 | 104   | 0   | 25    |
| U0525L5 | Pango   | 1969            | 2018            | 668349 | 5316315 | 155.1 | 286   | 0   | 20    |

| Hole ID | Company  | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip | Depth |
|---------|----------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U0531L5 | Pango    | 1969            | 2018            | 668401 | 5316545 | 153.9 | 100 | 0   | 27    |
| U0532L5 | Pango    | 1969            | 2018            | 668399 | 5316545 | 153.9 | 280 | 0   | 29    |
| U0533L5 | Pango    | 1969            | 2018            | 668401 | 5316560 | 153.9 | 102 | 0   | 30    |
| U0534L5 | Pango    | 1969            | 2018            | 668401 | 5316576 | 153.9 | 98  | 0   | 32    |
| U0536L5 | Pango    | 1969            | 2018            | 668401 | 5316592 | 153.9 | 103 | 0   | 31    |
| U0537L5 | Pango    | 1969            | 2018            | 668400 | 5316608 | 153.8 | 103 | 0   | 26    |
| U0538L5 | Pango    | 1969            | 2018            | 668398 | 5316609 | 153.9 | 280 | 0   | 26    |
| U0539L5 | Pango    | 1969            | 2018            | 668395 | 5316623 | 153.8 | 106 | 0   | 28    |
| U0540L5 | Pango    | 1969            | 2018            | 668370 | 5316727 | 154.8 | 183 | 46  | 40    |
| U0541L5 | Pango    | 1969            | 2018            | 668370 | 5316728 | 155.3 | 0   | 90  | 31    |
| U0542L5 | Pango    | 1969            | 2018            | 668370 | 5316730 | 155   | 5   | 42  | 51    |
| U0543L5 | Pango    | 1969            | 2018            | 668357 | 5316729 | 155.2 | 182 | 56  | 47    |
| U0544L5 | Pango    | 1969            | 2018            | 668357 | 5316730 | 155.5 | 0   | 90  | 40    |
| U0545L5 | Pango    | 1969            | 2018            | 668357 | 5316731 | 155.1 | 1   | 59  | 46    |
| U0546L5 | Pango    | 1969            | 2016            | 668356 | 5316730 | 155.5 | 236 | 65  | 45    |
| U0547L5 | Pango    | 1969            | 2018            | 668356 | 5316731 | 155.5 | 317 | 60  | 46    |
| U0548L3 | Pango    | 1969            | 2018            | 668360 | 5316975 | 227.8 | 276 | -49 | 45    |
| U0552L3 | Pango    | 1969            | 2018            | 668374 | 5316978 | 228.5 | 340 | -26 | 43    |
| U0553L3 | Pango    | 1969            | 2018            | 668374 | 5316978 | 228   | 340 | -47 | 62    |
| U0554L3 | Pango    | 1969            | 2018            | 668374 | 5316977 | 228.1 | 0   | -90 | 47    |
| U0555L3 | Pango    | 1969            | 2018            | 668375 | 5316978 | 228   | 30  | -38 | 48    |
| U0558L7 | Pango    | 1969            | 2016            | 668108 | 5316923 | 74.5  | 210 | -46 | 33    |
| U0559L7 | Pango    | 1969            | 2016            | 668108 | 5316924 | 74.7  | 0   | -90 | 26    |
| U0561L7 | Pango    | 1969            | 2016            | 668131 | 5316905 | 74.9  | 255 | -52 | 50    |
| U0562L7 | Pango    | 1969            | 2016            | 668132 | 5316905 | 75    | 224 | -55 | 62    |
| U0563L7 | Pango    | 1969            | 2016            | 668130 | 5316904 | 74.7  | 0   | -90 | 53    |
| U0564L7 | Pango    | 1969            | 2018            | 668132 | 5316906 | 74.7  | 35  | -60 | 63    |
| U0565L7 | Pango    | 1969            | 2018            | 668131 | 5316906 | 74.8  | 4   | -50 | 47    |
| U0566L5 | Pango    | 1969            | 2018            | 668398 | 5316714 | 154   | 94  | 0   | 26    |
| U0567L5 | Pango    | 1969            | 2016            | 668392 | 5316709 | 154   | 285 | 0   | 14    |
| U0568L5 | Pango    | 1969            | 2016            | 668391 | 5316690 | 155.6 | 94  | 0   | 24    |
| U0569L5 | Pango    | 1969            | 2016            | 668388 | 5316675 | 153.8 | 271 | 0   | 23    |
| U0569L7 | Pursides | 1974            | 2016            | 668416 | 5316307 | 97.1  | 119 | 46  | 22    |
| U0571L5 | Pango    | 1969            | 2018            | 668391 | 5316667 | 153.9 | 93  | 0   | 21    |
| U0572L5 | Pango    | 1969            | 2016            | 668392 | 5316660 | 153.8 | 89  | 0   | 21    |

| Hole ID | Company  | Year<br>Drilled | Year<br>Sampled | X      | Y       | Z     | AZ  | Dip | Depth |
|---------|----------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U0573L5 | Pango    | 1969            | 2016            | 668388 | 5316653 | 153.8 | 273 | 0   | 18    |
| U0574L5 | Pango    | 1969            | 2018            | 668392 | 5316653 | 153.8 | 93  | 0   | 26    |
| U0575L5 | Pango    | 1969            | 2018            | 668393 | 5316637 | 153.8 | 83  | 0   | 20    |
| U0576L5 | Pango    | 1969            | 2016            | 668390 | 5316637 | 153.8 | 263 | 0   | 22    |
| U0577L5 | Pango    | 1969            | 2018            | 668393 | 5316622 | 153.7 | 269 | 0   | 27    |
| U0577L7 | Pursides | 1974            | 2018            | 668392 | 5316220 | 81.1  | 119 | 0   | 44    |
| U0581L3 | Pango    | 1969            | 2016            | 668440 | 5317266 | 228.7 | 268 | -48 | 27    |
| U0585L3 | Pango    | 1969            | 2018            | 668440 | 5317296 | 229.7 | 89  | 0   | 18    |
| U0586L3 | Pango    | 1969            | 2016            | 668436 | 5317346 | 229.7 | 270 | 0   | 49    |
| U0587L3 | Pango    | 1969            | 2018            | 668439 | 5317346 | 229.8 | 92  | 0   | 30    |
| U0588L3 | Pango    | 1969            | 2018            | 668435 | 5317376 | 230.2 | 276 | 0   | 47    |
| U0589L3 | Pango    | 1969            | 2016            | 668438 | 5317376 | 230.4 | 94  | 0   | 31    |
| U0590L3 | Pango    | 1969            | 2016            | 668431 | 5317405 | 230.3 | 268 | 0   | 46    |
| U0591L3 | Pango    | 1969            | 2018            | 668437 | 5317405 | 230.2 | 86  | -2  | 44    |
| U0592L3 | Pango    | 1969            | 2016            | 668434 | 5317429 | 230.2 | 293 | 0   | 47    |
| U0593L3 | Pango    | 1969            | 2018            | 668437 | 5317429 | 230.2 | 93  | 0   | 30    |
| U0593L7 | Pursides | 1975            | 2018            | 668426 | 5316387 | 112.1 | 105 | -60 | 23    |
| U0594L5 | Pango    | 1969            | 2016            | 668486 | 5317020 | 154   | 272 | 0   | 47    |
| U0596L5 | Pango    | 1969            | 2016            | 668489 | 5317020 | 155.2 | 90  | 45  | 44    |
| U0597L5 | Pango    | 1969            | 2016            | 668508 | 5317042 | 154   | 280 | 0   | 61    |
| U0598L5 | Pango    | 1969            | 2016            | 668509 | 5317042 | 154   | 334 | -90 | 64    |
| U0598L7 | Pursides | 1975            | 2018            | 668421 | 5316338 | 103.5 | 120 | 45  | 15    |
| U0599L5 | Pango    | 1969            | 2016            | 668512 | 5317041 | 154   | 100 | 0   | 63    |
| U0600L5 | Pango    | 1969            | 2016            | 668511 | 5317041 | 153.1 | 100 | -42 | 53    |
| U0604L5 | Pango    | 1969            | 2018            | 668464 | 5316645 | 154.8 | 133 | 49  | 62    |
| U0605L5 | Pango    | 1969            | 2018            | 668344 | 5316304 | 155   | 296 | 0   | 36    |
| U0606L5 | Pango    | 1969            | 2018            | 668347 | 5316303 | 155   | 116 | 0   | 25    |
| U0607L5 | Pango    | 1969            | 2018            | 668338 | 5316297 | 155   | 297 | 0   | 55    |
| U0609L5 | Pango    | 1969            | 2018            | 668343 | 5316295 | 155   | 117 | 0   | 23    |
| U0610L5 | Pango    | 1969            | 2018            | 668340 | 5316296 | 156.7 | 116 | 47  | 16    |
| U0612L5 | Pango    | 1969            | 2018            | 668340 | 5316287 | 155.1 | 118 | 0   | 22    |
| U0613L5 | Pango    | 1969            | 2018            | 668335 | 5316282 | 155.2 | 296 | 0   | 32    |
| U0614L5 | Pango    | 1969            | 2018            | 668337 | 5316281 | 155.2 | 114 | 0   | 32    |
| U0615L5 | Pango    | 1969            | 2018            | 668332 | 5316274 | 155.1 | 296 | 0   | 32    |
| U0616L5 | Pango    | 1969            | 2018            | 668334 | 5316274 | 155.1 | 113 | 0   | 18    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x        | Y       | Z     | AZ  | Dip | Depth |
|---------|---------|-----------------|-----------------|----------|---------|-------|-----|-----|-------|
| U0617L5 | Pango   | 1969            | 2018            | 668326   | 5316269 | 155.1 | 298 | 2   | 56    |
| U0618L5 | Pango   | 1969            | 2018            | 668326   | 5316269 | 154.5 | 298 | -60 | 24    |
| U0619L5 | Pango   | 1969            | 2018            | 668331   | 5316267 | 155.1 | 117 | 0   | 39    |
| U0621L5 | Pango   | 1969            | 2018            | 668325   | 5316261 | 155.1 | 296 | 0   | 28    |
| U0622L5 | Pango   | 1969            | 2018            | 668328   | 5316260 | 155.1 | 115 | 0   | 22    |
| U0623L5 | Pango   | 1969            | 2018            | 668322   | 5316254 | 155.2 | 295 | 0   | 30    |
| U0624L5 | Pango   | 1969            | 2018            | 668325   | 5316253 | 155.2 | 116 | 0   | 31    |
| U0627L5 | Pango   | 1969            | 2018            | 668314   | 5316241 | 155.3 | 296 | 0   | 52    |
| U0629L5 | Pango   | 1969            | 2018            | 668319   | 5316239 | 155.3 | 116 | 0   | 25    |
| U0631L5 | Pango   | 1969            | 2018            | 668314   | 5316234 | 155.2 | 296 | 0   | 27    |
| U0635L5 | Pango   | 1969            | 2018            | 668307.4 | 5316218 | 155.2 | 295 | 0   | 29    |
| U0637L5 | Pango   | 1969            | 2018            | 668303   | 5316213 | 155.3 | 296 | 0   | 26    |
| U0638L5 | Pango   | 1969            | 2018            | 668305   | 5316212 | 154.5 | 293 | -60 | 32    |
| U0639L5 | Pango   | 1969            | 2018            | 668307   | 5316211 | 155.3 | 113 | 0   | 25    |
| U0640L5 | Pango   | 1969            | 2018            | 668307   | 5316211 | 156.4 | 114 | 42  | 16    |
| U0641L5 | Pango   | 1969            | 2018            | 668302   | 5316205 | 155.3 | 295 | 0   | 31    |
| U0642L5 | Pango   | 1969            | 2018            | 668304   | 5316204 | 155.3 | 115 | 0   | 22    |
| U0643L5 | Surluga | 1969            | 2018            | 668299   | 5316198 | 155.3 | 291 | 0   | 29    |
| U0644L5 | Pango   | 1969            | 2018            | 668301   | 5316197 | 155.3 | 113 | 0   | 23    |
| U0645L5 | Pango   | 1969            | 2018            | 668296   | 5316191 | 155.5 | 292 | 0   | 31    |
| U0646L5 | Pango   | 1969            | 2018            | 668298   | 5316190 | 155.4 | 120 | 0   | 17    |
| U0647L5 | Pango   | 1969            | 2018            | 668293   | 5316184 | 155.5 | 298 | 0   | 31    |
| U0648L5 | Pango   | 1969            | 2018            | 668293   | 5316184 | 154.6 | 295 | -61 | 23    |
| U0649L5 | Pango   | 1969            | 2018            | 668295   | 5316183 | 155.5 | 116 | 0   | 18    |
| U0650L5 | Pango   | 1969            | 2018            | 668293   | 5316183 | 156.3 | 114 | 40  | 17    |
| U0651L5 | Pango   | 1969            | 2018            | 668350   | 5316872 | 152.6 | 84  | 0   | 15    |
| U0652L5 | Pango   | 1969            | 2018            | 668350   | 5316871 | 152.6 | 122 | 0   | 18    |
| U0653L5 | Pango   | 1969            | 2018            | 668396   | 5316830 | 153.7 | 272 | 1   | 49    |
| U0654L5 | Pango   | 1969            | 2016            | 668435   | 5316828 | 152.8 | 269 | -50 | 70    |
| U0655L5 | Pango   | 1969            | 2018            | 668291   | 5316179 | 155.3 | 247 | 0   | 33    |
| U0656L5 | Pango   | 1969            | 2018            | 668293   | 5316178 | 155.3 | 155 | 0   | 32    |
| U0657L5 | Pango   | 1969            | 2018            | 668300   | 5316197 | 156.9 | 113 | 61  | 16    |
| U0658L5 | Pango   | 1969            | 2018            | 668304   | 5316205 | 156.9 | 113 | 60  | 15    |
| U0659L5 | Pango   | 1969            | 2018            | 668314   | 5316234 | 154.6 | 296 | -60 | 20    |
| U0660L5 | Pango   | 1969            | 2018            | 668316   | 5316233 | 156.9 | 114 | 60  | 15    |

| Hole ID | Company        | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip | Depth |
|---------|----------------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U0661L5 | Pango          | 1969            | 2018            | 668320 | 5316246 | 154.3 | 294 | -60 | 21    |
| U0664L5 | Pango          | 1969            | 2018            | 668345 | 5316304 | 153.9 | 117 | -60 | 28    |
| U0665L5 | Pango          | 1969            | 2016            | 668509 | 5317041 | 153.5 | 269 | -60 | 258   |
| U0666L5 | Pango          | 1969            | 2016            | 668441 | 5316827 | 152.5 | 114 | -66 | 45    |
| U0667L5 | Pango          | 1970            | 2018            | 668415 | 5316456 | 153.8 | 186 | -31 | 78    |
| U0668L5 | Pango          | 1970            | 2018            | 668414 | 5316456 | 153.8 | 245 | -25 | 41    |
| U0669L5 | Pango          | 1970            | 2016            | 668414 | 5316458 | 153.8 | 320 | -23 | 41    |
| U0670L5 | Pango          | 1970            | 2018            | 668415 | 5316458 | 153.9 | 9   | -28 | 50    |
| U0671L5 | Pango          | 1970            | 2018            | 668415 | 5316458 | 153.8 | 0   | -90 | 32    |
| U0672L5 | Pango          | 1969            | 2016            | 668431 | 5316454 | 154.2 | 187 | -50 | 62    |
| U0673L5 | Pango          | 1969            | 2016            | 668431 | 5316454 | 154.1 | 146 | -52 | 66    |
| U0674L5 | Pango          | 1970            | 2018            | 668431 | 5316455 | 153.6 | 105 | -60 | 77    |
| U0675L5 | Pango          | 1970            | 2016            | 668431 | 5316455 | 153.6 | 48  | -51 | 61    |
| U0676L5 | Pango          | 1970            | 2018            | 668430 | 5316455 | 156.7 | 5   | -49 | 56    |
| U0677L5 | Pango          | 1970            | 2016            | 668431 | 5316455 | 153.6 | 0   | -90 | 46    |
| U0678L5 | Pango          | 1970            | 2016            | 668431 | 5316454 | 154.2 | 187 | -68 | 58    |
| U0679L5 | Pango          | 1970            | 2016            | 668438 | 5316828 | 152.8 | 288 | -53 | 259   |
| U0683L5 | Pango          | 1970            | 2018            | 668340 | 5316419 | 156   | 14  | 50  | 45    |
| U0684L5 | Pango          | 1970            | 2018            | 668340 | 5316417 | 155.9 | 196 | 46  | 40    |
| U0686L5 | Pango          | 1970            | 2018            | 668331 | 5316421 | 156.5 | 17  | 60  | 20    |
| U0688L5 | Pango          | 1970            | 2018            | 668414 | 5316370 | 154.1 | 201 | -66 | 73    |
| U0689L5 | Pango          | 1970            | 2018            | 668414 | 5316371 | 154.1 | 0   | -90 | 69    |
| U0690L5 | Pango          | 1970            | 2016            | 668414 | 5316371 | 154.1 | 6   | -62 | 80    |
| U0691L5 | Pango          | 1970            | 2018            | 668392 | 5316374 | 154   | 192 | -50 | 55    |
| U0692L5 | Pango          | 1970            | 2018            | 668391 | 5316375 | 154   | 288 | -60 | 48    |
| U0693L5 | Pango          | 1970            | 2018            | 668392 | 5316376 | 154   | 9   | -50 | 53    |
| U0694L5 | Pango          | 1970            | 2016            | 668414 | 5316370 | 154.1 | 287 | -63 | 61    |
| U0695L5 | Pango          | 1970            | 2016            | 668461 | 5316401 | 153.8 | 12  | -62 | 98    |
| U0696L5 | Pango          | 1970            | 2016            | 668460 | 5316400 | 153.8 | 0   | -90 | 108   |
| U0697L5 | Pango          | 1970            | 2016            | 668269 | 5316094 | 155.8 | 289 | 0   | 113   |
| U0698L5 | Pango          | 1970            | 2018            | 668272 | 5316093 | 155.8 | 109 | 0   | 77    |
| U0700L5 | Pango          | 1970            | 2016            | 668460 | 5316399 | 155.8 | 195 | -65 | 60    |
| U0701L5 | Log<br>Missing | 0               | 2018            | 668397 | 5316415 | 153.6 | 11  | -49 | 46    |
| U0702L5 | Log<br>Missing | 0               | 2018            | 668396 | 5316414 | 153.6 | 0   | -90 | 40    |

| Hole ID | Company        | Year<br>Drilled | Year<br>Sampled | X      | Y       | Z     | AZ  | Dip | Depth |
|---------|----------------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U0703L5 | Log<br>Missing | 0               | 2018            | 668396 | 5316413 | 153.6 | 191 | -60 | 46    |
| U0705L5 | Log<br>Missing | 0               | 2018            | 668422 | 5316408 | 153.7 | 0   | -90 | 51    |
| U0706L5 | Log<br>Missing | 0               | 2016            | 668421 | 5316407 | 153.7 | 191 | -57 | 61    |
| U0708L5 | Log<br>Missing | 0               | 2018            | 668286 | 5316152 | 155.4 | 104 | 0   | 24    |
| U0710L5 | Log<br>Missing | 0               | 2016            | 668285 | 5316146 | 155.4 | 106 | 0   | 30    |
| U0711L5 | Log<br>Missing | 0               | 2016            | 668282 | 5316139 | 154.5 | 0   | -90 | 34    |
| U0712L5 | Log<br>Missing | 0               | 2018            | 668280 | 5316132 | 154.5 | 0   | -90 | 34    |
| U0713L5 | Log<br>Missing | 0               | 2016            | 668278 | 5316123 | 154.5 | 0   | -90 | 75    |
| U0714L5 | Log<br>Missing | 0               | 2016            | 668277 | 5316123 | 154.5 | 288 | -45 | 74    |
| U0715L5 | Log<br>Missing | 0               | 2016            | 668441 | 5316405 | 153.7 | 13  | -62 | 54    |
| U0716L5 | Log<br>Missing | 0               | 2016            | 668441 | 5316403 | 153.7 | 195 | -62 | 64    |
| U0717L5 | Log<br>Missing | 0               | 2016            | 668441 | 5316404 | 153.7 | 0   | -90 | 54    |
| U0718L5 | Log<br>Missing | 0               | 2018            | 668462 | 5316401 | 153.8 | 60  | -70 | 85    |
| U0719L5 | Log<br>Missing | 0               | 2018            | 668461 | 5316400 | 153.8 | 151 | -70 | 77    |
| U0720L5 | Log<br>Missing | 0               | 2018            | 668415 | 5316370 | 154.1 | 145 | -69 | 62    |
| U0721L5 | Log<br>Missing | 0               | 2016            | 668414 | 5316370 | 154.4 | 190 | -45 | 77    |
| U0722L5 | Log<br>Missing | 0               | 2016            | 668404 | 5316371 | 154.2 | 195 | -40 | 62    |
| U0727L5 | Log<br>Missing | 0               | 2018            | 668386 | 5316511 | 167.5 | 340 | 0   | 41    |
| U0727L7 | Pursides       | 1975            | 2016            | 668396 | 5316159 | 80.3  | 118 | -40 | 212   |
| U0728L5 | Log<br>Missing | 0               | 2018            | 668386 | 5316511 | 166.6 | 340 | -45 | 31    |
| U0729L5 | Pango          | 1970            | 2018            | 668386 | 5316510 | 167.5 | 270 | 0   | 48    |
| U0730L5 | Log<br>Missing | 0               | 2018            | 668386 | 5316510 | 166.5 | 272 | -45 | 32    |
| U0731L5 | Log<br>Missing | 0               | 2018            | 668323 | 5316503 | 194.2 | 0   | 90  | 39    |
| U0732L5 | Pango          | 1970            | 2018            | 668324 | 5316503 | 193.6 | 100 | 60  | 23    |
| U0733L5 | Log<br>Missing | 0               | 2018            | 668332 | 5316498 | 188.1 | 110 | 60  | 22    |

| Hole ID | Company        | Year<br>Drilled | Year<br>Sampled | X      | Y       | Z     | AZ  | Dip | Depth |
|---------|----------------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U0734L5 | Log<br>Missing | 0               | 2018            | 668336 | 5316496 | 185.9 | 110 | 60  | 17    |
| U0735L5 | Log<br>Missing | 0               | 2018            | 668342 | 5316493 | 182.1 | 110 | 60  | 17    |
| U0736L5 | Pango          | 1970            | 2018            | 668347 | 5316490 | 178.6 | 104 | 60  | 17    |
| U0739L5 | Log<br>Missing | 0               | 2018            | 668366 | 5316480 | 165.4 | 98  | 60  | 25    |
| U0742L5 | Log<br>Missing | 0               | 2018            | 668299 | 5316447 | 193.8 | 103 | 60  | 31    |
| U0743L5 | Log<br>Missing | 0               | 2018            | 668305 | 5316444 | 189.9 | 105 | 59  | 18    |
| U0744L5 | Log<br>Missing | 0               | 2018            | 668311 | 5316441 | 185.8 | 96  | 60  | 17    |
| U0746L5 | Log<br>Missing | 0               | 2018            | 668322 | 5316435 | 178.6 | 103 | 60  | 18    |
| U0748L5 | Log<br>Missing | 0               | 2018            | 668335 | 5316428 | 170.7 | 112 | 60  | 18    |
| U0749L5 | Log<br>Missing | 0               | 2018            | 668337 | 5316423 | 168.1 | 110 | 60  | 19    |
| U0751L5 | Pango          | 1970            | 2018            | 668351 | 5316419 | 160.4 | 101 | 60  | 18    |
| U0763L6 | Pango          | 1970            | 2016            | 668431 | 5316675 | 124.1 | 150 | 60  | 21    |
| U0764L6 | Pango          | 1970            | 2018            | 668435 | 5316671 | 121.4 | 160 | 60  | 22    |
| U0766L5 | Pango          | 1970            | 2018            | 668391 | 5316468 | 156.3 | 108 | 67  | 15    |
| U0767L5 | Pango          | 1970            | 2018            | 668398 | 5316460 | 153.7 | 293 | -60 | 17    |
| U0768L5 | Pango          | 1970            | 2016            | 668422 | 5316456 | 153.6 | 293 | -66 | 34    |
| U0772L6 | Pango          | 1970            | 2018            | 668393 | 5316351 | 116.9 | 115 | 0   | 46    |
| U0774L6 | Pango          | 1970            | 2018            | 668396 | 5316358 | 116.9 | 117 | 0   | 42    |
| U0776L6 | Pango          | 1970            | 2016            | 668399 | 5316365 | 116.8 | 117 | 0   | 44    |
| U0777L6 | Pango          | 1970            | 2018            | 668421 | 5316422 | 115.3 | 114 | -70 | 15    |
| U0781L6 | Pango          | 1970            | 2018            | 668402 | 5316380 | 116.4 | 293 | 0   | 13    |
| U0784L6 | Pango          | 1970            | 2018            | 668410 | 5316393 | 116.3 | 114 | 0   | 37    |
| U0793L6 | Pango          | 1970            | 2018            | 668420 | 5316422 | 116   | 294 | -19 | 17    |
| U0798L6 | Pango          | 1970            | 2018            | 668430 | 5316442 | 116.1 | 118 | 0   | 30    |
| U0810L6 | Pango          | 1970            | 2018            | 668444 | 5316486 | 115.9 | 295 | 0   | 15    |
| U0812L6 | Pango          | 1970            | 2018            | 668451 | 5316499 | 116   | 293 | 0   | 22    |
| U0825L6 | Pango          | 1970            | 2016            | 668417 | 5316493 | 135.7 | 104 | 60  | 12    |
| U0846L6 | Pursides       | 1974            | 2018            | 668399 | 5316431 | 130.6 | 123 | 0   | 37    |
| U0847L6 | Pursides       | 1974            | 2018            | 668409 | 5316426 | 123.6 | 122 | 0   | 39    |
| U0848L6 | Pursides       | 1974            | 2018            | 668431 | 5316484 | 124.6 | 123 | 0   | 25    |
| U0851L6 | Pursides       | 1974            | 2018            | 668417 | 5316492 | 131.8 | 300 | 0   | 13    |
| Hole ID | Company  | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip   | Depth |
|---------|----------|-----------------|-----------------|--------|---------|-------|-----|-------|-------|
| U0852L6 | Pursides | 1974            | 2018            | 668382 | 5316441 | 146.9 | 114 | 0     | 31    |
| U0857L6 | Pursides | 1974            | 2018            | 668372 | 5316310 | 115.8 | 0   | -90   | 15    |
| U0863L6 | Pursides | 1975            | 2018            | 668353 | 5316268 | 117.1 | 294 | 0     | 16    |
| U0868L6 | Pursides | 1975            | 2016            | 668352 | 5316251 | 116.4 | 114 | -20.5 | 61    |
| U0869L6 | Pursides | 1975            | 2016            | 668352 | 5316251 | 117   | 116 | 3     | 45    |
| U0870L6 | Pursides | 1975            | 2018            | 668351 | 5316252 | 118.7 | 0   | 90    | 33    |
| U0871L6 | Pursides | 1975            | 2018            | 668334 | 5316210 | 116.9 | 116 | -20   | 61    |
| U0882L6 | Pursides | 1975            | 2016            | 668372 | 5316293 | 118.1 | 115 | 45    | 27    |
| U0883L6 | Pursides | 1975            | 2018            | 668371 | 5316293 | 118.4 | 0   | 90    | 30    |
| U0889L6 | Pursides | 1975            | 2018            | 668387 | 5316337 | 115.9 | 117 | -20   | 13    |
| U0893L6 | Pursides | 1975            | 2018            | 668384 | 5316337 | 118.2 | 300 | 69    | 29    |
| U0898L6 | Pursides | 1975            | 2018            | 668381 | 5316323 | 118.2 | 111 | 46.5  | 27    |
| U0904L6 | Pursides | 1975            | 2016            | 668375 | 5316308 | 116.7 | 117 | -2    | 41    |
| U0905L6 | Pursides | 1975            | 2016            | 668375 | 5316309 | 116.2 | 118 | -22   | 13    |
| U0906L6 | Pursides | 1975            | 2016            | 668372 | 5316301 | 116.8 | 113 | -1    | 28    |
| U0907L6 | Pursides | 1975            | 2018            | 668372 | 5316301 | 116.5 | 113 | -12.5 | 28    |
| U0916L6 | Pursides | 1975            | 2018            | 668363 | 5316280 | 118   | 114 | 45    | 14    |
| U0920L6 | Pursides | 1975            | 2018            | 668360 | 5316273 | 118   | 118 | 45    | 13    |
| U0922L6 | Pursides | 1975            | 2016            | 668358 | 5316266 | 117   | 114 | 0     | 23    |
| U0925L6 | Pursides | 1975            | 2016            | 668356 | 5316267 | 118.5 | 0   | 90    | 19    |
| U0926L6 | Pursides | 1975            | 2016            | 668355 | 5316259 | 116.9 | 113 | 1.5   | 22    |
| U0927L6 | Pursides | 1975            | 2016            | 668355 | 5316260 | 116.6 | 112 | -20.5 | 61    |
| U0935L6 | Pursides | 1975            | 2018            | 668346 | 5316238 | 116.6 | 113 | -20   | 17    |
| U0946L6 | Pursides | 1975            | 2016            | 668338 | 5316217 | 117.3 | 117 | 1     | 41    |
| U0959L6 | Pursides | 1975            | 2018            | 668325 | 5316189 | 117   | 114 | -23   | 8     |
| U0966L6 | Pursides | 1975            | 2016            | 668320 | 5316174 | 117.5 | 114 | 0.5   | 29    |
| U0970L6 | Pursides | 1975            | 2016            | 668314 | 5316160 | 117.7 | 117 | -0.5  | 45    |
| U0971L6 | Pursides | 1975            | 2016            | 668314 | 5316161 | 117.3 | 116 | -20   | 62    |
| U0972L6 | Pursides | 1975            | 2016            | 668313 | 5316161 | 118.9 | 116 | 45.5  | 26    |
| U0979L6 | Pursides | 1975            | 2018            | 668311 | 5316156 | 118   | 204 | 6.5   | 26    |
| U0984L6 | Pursides | 1975            | 2018            | 668392 | 5316352 | 118.3 | 114 | 60    | 24    |
| U0986L6 | Pursides | 1975            | 2018            | 668391 | 5316352 | 118.3 | 294 | 69    | 30    |
| U0991L6 | Pursides | 1975            | 2018            | 668414 | 5316408 | 115.5 | 293 | -60   | 9     |
| U0992L6 | Pursides | 1975            | 2018            | 668427 | 5316434 | 116.4 | 113 | -1.5  | 24    |
| U0995L6 | Pursides | 1975            | 2018            | 668426 | 5316436 | 118   | 296 | 62    | 21    |

| Hole ID | Company  | Year<br>Drilled | Year<br>Sampled | x        | Y       | Z     | AZ  | Dip | Depth |
|---------|----------|-----------------|-----------------|----------|---------|-------|-----|-----|-------|
| U0996L6 | Pursides | 1975            | 2018            | 668433   | 5316448 | 116.4 | 112 | 0   | 24    |
| U0997L6 | Pursides | 1975            | 2018            | 668433   | 5316450 | 118   | 112 | 60  | 14    |
| U0998L6 | Pursides | 1975            | 2016            | 668430   | 5316449 | 116.5 | 293 | 0   | 11    |
| U0999L6 | Pursides | 1975            | 2018            | 668439   | 5316463 | 116.4 | 112 | 0   | 5     |
| U1027L2 | Citadel  | 1987            | 2018            | 668245   | 5316900 | 268.8 | 190 | 52  | 32    |
| U1033L2 | Citadel  | 1987            | 2018            | 668236   | 5316778 | 266.9 | 0   | -90 | 6     |
| U1037L2 | Citadel  | 1987            | 2018            | 668229   | 5316687 | 268.1 | 90  | 0   | 21    |
| U1043L6 | Citadel  | 1987            | 2016            | 668318   | 5316167 | 118.6 | 114 | 45  | 23    |
| U1108L3 | Citadel  | 1987            | 2018            | 668286   | 5316779 | 230.7 | 0   | 90  | 22    |
| U1113L3 | Citadel  | 1987            | 2018            | 668297   | 5316917 | 229.2 | 90  | -15 | 52    |
| U1117L3 | Citadel  | 1987            | 2018            | 668325.5 | 5317039 | 230.7 | 270 | 80  | 37    |
| U1220L6 | Citadel  | 1987            | 2016            | 668453   | 5316507 | 114.9 | 294 | -45 | 25    |
| U1226L6 | Citadel  | 1987            | 2016            | 668453   | 5316524 | 117.7 | 114 | 45  | 25    |
| U1231L6 | Citadel  | 1987            | 2018            | 668446   | 5316560 | 113.4 | 294 | 0   | 19    |
| U1233L6 | Citadel  | 1987            | 2018            | 668446   | 5316576 | 115.2 | 114 | 64  | 34    |
| U1235L6 | Citadel  | 1987            | 2018            | 668443   | 5316593 | 115.2 | 114 | 63  | 45    |
| U1258L5 | Citadel  | 1987            | 2018            | 668324   | 5316255 | 154.4 | 294 | -45 | 49    |
| U1265L5 | Citadel  | 1987            | 2018            | 668330   | 5316269 | 154.2 | 0   | -90 | 29    |
| U1335L5 | Citadel  | 1987            | 2018            | 668404   | 5316478 | 153.5 | 0   | -90 | 25    |
| U1359L5 | Citadel  | 1987            | 2018            | 668399   | 5316597 | 155.1 | 294 | 67  | 26    |
| U1360L5 | Citadel  | 1987            | 2018            | 668399   | 5316597 | 153   | 294 | -60 | 20    |
| U1362L5 | Citadel  | 1987            | 2016            | 668297   | 5316057 | 154.7 | 0   | -90 | 77    |
| U1367L7 | Citadel  | 1987            | 2016            | 668379   | 5316183 | 82.9  | 0   | 90  | 30    |
| U1393L7 | Citadel  | 1987            | 2018            | 668406   | 5316271 | 87.2  | 294 | 58  | 33    |
| U1402L7 | Citadel  | 1987            | 2018            | 668410   | 5316302 | 94.5  | 294 | 0   | 37    |
| U1403L7 | Citadel  | 1987            | 2016            | 668411   | 5316302 | 96    | 294 | 70  | 32    |
| U1404L7 | Citadel  | 1987            | 2018            | 668412   | 5316309 | 98.2  | 294 | 67  | 43    |
| U1434L7 | Citadel  | 1987            | 2016            | 668435   | 5316416 | 118.9 | 114 | -45 | 58    |
| U1442L7 | Citadel  | 1987            | 2018            | 668452   | 5316474 | 119.8 | 114 | 62  | 7     |
| U1443L7 | Citadel  | 1987            | 2018            | 668453   | 5316474 | 117   | 114 | -90 | 21    |
| U1470L7 | Citadel  | 1987            | 2016            | 668387   | 5316237 | 81.7  | 294 | 0   | 55    |
| U1471L7 | Citadel  | 1987            | 2016            | 668406   | 5316247 | 82.6  | 114 | 0   | 44    |
| U1478L7 | Citadel  | 1987            | 2018            | 668418   | 5316332 | 101.5 | 114 | 0   | 36    |
| U1480L7 | Citadel  | 1987            | 2016            | 668416   | 5316316 | 98.2  | 114 | 0   | 30    |
| U1500L5 | Citadel  | 1987            | 2016            | 668272   | 5316104 | 155.8 | 294 | -45 | 55    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U1501L5 | Citadel | 1987            | 2016            | 668273 | 5316103 | 154.5 | 294 | 0   | 55    |
| U1502L5 | Citadel | 1987            | 2018            | 668270 | 5316088 | 155.6 | 294 | 0   | 68    |
| U1503L5 | Citadel | 1987            | 2016            | 668272 | 5316087 | 154.5 | 0   | -90 | 106   |
| U1507L5 | Citadel | 1987            | 2016            | 668298 | 5316058 | 155.6 | 24  | -65 | 104   |
| U1508L5 | Citadel | 1987            | 2016            | 668298 | 5316058 | 155.6 | 24  | -47 | 132   |
| U1509L5 | Citadel | 1987            | 2016            | 668299 | 5316057 | 155.6 | 114 | -65 | 138   |
| U1610L4 | Citadel | 1987            | 2018            | 668360 | 5316782 | 191.7 | 90  | 47  | 19    |
| U1650L5 | Citadel | 1988            | 2016            | 668240 | 5316067 | 156   | 294 | 0   | 119   |
| U1651L5 | Citadel | 1988            | 2018            | 668241 | 5316068 | 155   | 294 | -45 | 71    |
| U1652L5 | Citadel | 1988            | 2016            | 668213 | 5316044 | 156   | 294 | 0   | 91    |
| U1654L5 | Citadel | 1988            | 2018            | 668188 | 5316023 | 156.6 | 294 | 0   | 74    |
| U1655L5 | Citadel | 1988            | 2016            | 668189 | 5316023 | 155.5 | 299 | -45 | 61    |
| U1656L5 | Citadel | 1988            | 2016            | 668189 | 5316022 | 155.4 | 0   | -90 | 58    |
| U1657L5 | Citadel | 1988            | 2018            | 668161 | 5316001 | 156.9 | 294 | 0   | 77    |
| U1658L5 | Citadel | 1988            | 2018            | 668162 | 5316001 | 155.7 | 294 | -45 | 51    |
| U1659L5 | Citadel | 1989            | 2018            | 668163 | 5316000 | 155.5 | 0   | -90 | 61    |
| U1660L5 | Citadel | 1989            | 2018            | 668134 | 5315978 | 156.9 | 294 | 0   | 61    |
| U1661L5 | Citadel | 1989            | 2016            | 668135 | 5315978 | 156.1 | 294 | -45 | 52    |
| U1662L5 | Citadel | 1989            | 2016            | 668108 | 5315956 | 157   | 294 | 0   | 49    |
| U1663L5 | Citadel | 1989            | 2016            | 668109 | 5315956 | 156.1 | 294 | -45 | 31    |
| U1664L5 | Citadel | 1989            | 2016            | 668109 | 5315955 | 155.9 | 0   | -90 | 53    |
| U1665L5 | Citadel | 1989            | 2016            | 668111 | 5315955 | 157.1 | 114 | 0   | 21    |
| U1666L5 | Citadel | 1989            | 2016            | 668085 | 5315932 | 157.2 | 106 | 2   | 25    |
| U1667L5 | Citadel | 1989            | 2016            | 668081 | 5315933 | 157.2 | 285 | 1   | 31    |
| U1669L5 | Citadel | 1989            | 2016            | 668084 | 5315933 | 158.5 | 103 | 45  | 20    |
| U1671L5 | Citadel | 1989            | 2018            | 668070 | 5315921 | 157.2 | 230 | 1.5 | 71    |
| U1672L5 | Citadel | 1989            | 2016            | 668071 | 5315921 | 157.2 | 211 | 2   | 109   |
| U1673L5 | Citadel | 1989            | 2016            | 668071 | 5315921 | 157.2 | 220 | 1   | 107   |
| U1675L5 | Citadel | 1989            | 2016            | 668122 | 5315967 | 157.1 | 294 | 0   | 43    |
| U1676L5 | Citadel | 1989            | 2018            | 668122 | 5315967 | 156.3 | 293 | -25 | 34    |
| U1677L5 | Citadel | 1989            | 2018            | 668148 | 5315989 | 156.2 | 294 | -25 | 48    |
| U1679L5 | Citadel | 1989            | 2016            | 668242 | 5316065 | 156.4 | 114 | -5  | 94    |
| U1680L5 | Citadel | 1989            | 2016            | 668269 | 5316094 | 156.3 | 294 | 5   | 140   |
| U1683L5 | Citadel | 1989            | 2016            | 668302 | 5316056 | 156.5 | 111 | 3   | 137   |
| U1686L4 | Citadel | 1989            | 2016            | 668313 | 5316664 | 191.8 | 116 | -3  | 46    |

| Hole ID | Company | Year<br>Drilled | Year<br>Sampled | x      | Y       | Z     | AZ  | Dip | Depth |
|---------|---------|-----------------|-----------------|--------|---------|-------|-----|-----|-------|
| U1687L4 | Citadel | 1989            | 2016            | 668312 | 5316663 | 192.9 | 116 | 37  | 37    |
| U1688L4 | Citadel | 1989            | 2016            | 668309 | 5316632 | 192   | 114 | 0   | 70    |
| U1689L4 | Citadel | 1989            | 2016            | 668309 | 5316632 | 193.2 | 114 | 45  | 39    |
| U1690L4 | Citadel | 1989            | 2016            | 668308 | 5316633 | 193.5 | 298 | 69  | 43    |
| U1691L4 | Citadel | 1989            | 2016            | 668306 | 5316601 | 192.2 | 112 | 1   | 67    |
| U1692L4 | Citadel | 1989            | 2016            | 668305 | 5316601 | 193.2 | 111 | 45  | 46    |
| U1693L4 | Citadel | 1989            | 2016            | 668303 | 5316602 | 192.1 | 290 | 0   | 24    |
| U1694L4 | Citadel | 1989            | 2016            | 668303 | 5316569 | 192.5 | 114 | 0   | 61    |
| U1695L4 | Citadel | 1989            | 2016            | 668302 | 5316569 | 193.4 | 117 | 50  | 46    |
| U1697L4 | Citadel | 1989            | 2016            | 668300 | 5316537 | 192.8 | 115 | 1   | 56    |
| U1698L4 | Citadel | 1989            | 2016            | 668297 | 5316538 | 192.8 | 295 | 0   | 27    |
| U1699L4 | Citadel | 1989            | 2016            | 668298 | 5316503 | 192.9 | 122 | 1   | 75    |
| U1700L4 | Citadel | 1989            | 2016            | 668297 | 5316503 | 194   | 126 | 46  | 46    |
| U1701L4 | Citadel | 1989            | 2016            | 668295 | 5316505 | 192.9 | 304 | 1   | 30    |
| U1702L4 | Citadel | 1989            | 2016            | 668295 | 5316505 | 191.9 | 308 | -47 | 21    |
| U1703L4 | Citadel | 1989            | 2016            | 668296 | 5316473 | 192.8 | 117 | 1   | 64    |
| U1705L4 | Citadel | 1989            | 2016            | 668293 | 5316474 | 192.9 | 298 | 1   | 37    |
| U1707L4 | Citadel | 1989            | 2016            | 668295 | 5316441 | 193.1 | 117 | 3   | 67    |
| U1708L4 | Citadel | 1989            | 2016            | 668292 | 5316443 | 193.1 | 296 | 0   | 43    |
| U1709L4 | Citadel | 1989            | 2016            | 668292 | 5316443 | 192   | 297 | -43 | 24    |
| U1710L4 | Citadel | 1989            | 2016            | 668260 | 5316421 | 193.2 | 118 | 0   | 63    |
| U1711L4 | Citadel | 1989            | 2016            | 668260 | 5316421 | 194.6 | 117 | 43  | 40    |
| U1712L4 | Citadel | 1989            | 2016            | 668242 | 5316400 | 193.5 | 207 | 1   | 92    |
| U1713L4 | Citadel | 1989            | 2018            | 668243 | 5316400 | 193.4 | 185 | 0   | 92    |
| U1722L5 | Citadel | 1989            | 2016            | 668296 | 5316232 | 155.6 | 305 | 1   | 61    |
| U1723L5 | Citadel | 1989            | 2016            | 668296 | 5316232 | 154.8 | 294 | -40 | 61    |
| U1725L5 | Citadel | 1989            | 2018            | 668296 | 5316232 | 156.4 | 307 | 20  | 107   |



Figure 9-14: Red Pine Wawa Gold Project 2016 and 2018 Historical Diamond Drill Core Sampling Program Collar Locations

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S156    | 169.77                   | 170.99                 | 1.22   | 9.6    | 668139 | 5316198 | 214.8 |
| S156    | 171.6                    | 172.52                 | 0.92   | 6.98   | 668139 | 5316198 | 213.1 |
| S156    | 178                      | 178.31                 | 0.31   | 2.4    | 668139 | 5316198 | 207   |
| S156    | 189.59                   | 191.11                 | 1.52   | 13.5   | 668139 | 5316198 | 194.8 |
| S162    | 89                       | 89.15                  | 0.15   | 3.43   | 668204 | 5316265 | 288.5 |
| S162    | 166.42                   | 166.73                 | 0.31   | 4.46   | 668204 | 5316265 | 211   |
| S164    | 118.26                   | 119.18                 | 0.92   | 20.91  | 668107 | 5316316 | 258   |
| S164    | 121.62                   | 123.14                 | 1.52   | 7.64   | 668107 | 5316316 | 254.3 |
| S170    | 66.75                    | 69.19                  | 2.44   | 3.77   | 668097 | 5316396 | 286.7 |
| S170    | 70.71                    | 71.26                  | 0.55   | 2.4    | 668097 | 5316396 | 283.7 |
| S170    | 73.76                    | 74.68                  | 0.92   | 3.09   | 668097 | 5316396 | 280.4 |
| S172    | 5.64                     | 6.25                   | 0.61   | 6.51   | 668267 | 5316454 | 375.4 |
| S173    | 161.54                   | 162.46                 | 0.92   | 2.06   | 668290 | 5316498 | 221.7 |
| S173    | 186.54                   | 192.63                 | 6.09   | 4.38   | 668290 | 5316498 | 194.1 |
| S174    | 184.56                   | 185.17                 | 0.61   | 2.4    | 668328 | 5316572 | 200.1 |
| S174    | 192.33                   | 193.24                 | 0.91   | 6.86   | 668328 | 5316572 | 192.2 |
| S174W2  | 174.65                   | 178.61                 | 3.96   | 3.66   | 668328 | 5316572 | 47.7  |
| S174W2  | 191.72                   | 192.63                 | 0.91   | 4.8    | 668328 | 5316572 | 32.1  |
| S175    | 272.03                   | 274.32                 | 2.29   | 3.56   | 668459 | 5316378 | 106.3 |
| S175    | 275.08                   | 276.3                  | 1.22   | 2.36   | 668459 | 5316378 | 103.9 |
| S175W   | 271.27                   | 272.49                 | 1.22   | 13.37  | 668459 | 5316376 | 107.6 |
| S175W   | 276.33                   | 277.06                 | 0.73   | 3.43   | 668458 | 5316377 | 102.9 |
| S176    | 294.13                   | 295.66                 | 1.53   | 5.19   | 668482 | 5316441 | 85.7  |
| S177    | 183.49                   | 185.32                 | 1.83   | 2.06   | 668171 | 5316149 | 185.4 |
| S177    | 190.5                    | 191.26                 | 0.76   | 8.91   | 668171 | 5316149 | 178.9 |
| S177    | 193.24                   | 195.07                 | 1.83   | 3.08   | 668171 | 5316149 | 175.6 |
| S178    | 111.56                   | 114.3                  | 2.74   | 9.84   | 668246 | 5315532 | 250.2 |
| S178    | 145.69                   | 146.3                  | 0.61   | 2.06   | 668246 | 5315532 | 217.1 |
| S182    | 102.11                   | 104.7                  | 2.59   | 3.95   | 668235 | 5315466 | 248.6 |
| S183    | 107.29                   | 107.9                  | 0.61   | 42.86  | 668152 | 5315693 | 237.8 |
| S184c1  | 33.22                    | 34.75                  | 1.53   | 10.97  | 669580 | 5318025 | 334.4 |
| S184c1  | 71.02                    | 71.48                  | 0.46   | 2.4    | 669580 | 5318025 | 297.1 |
| S185c2  | 23.93                    | 32                     | 8.07   | 4.66   | 669552 | 5318036 | 339.5 |
| S187c4  | 43.98                    | 44.59                  | 0.61   | 6.17   | 669608 | 5318007 | 317.9 |

## Table 9-13: Highlights of Assays Results of Historical Holes Obtained from Intervals Left Un-sampled by Previous Operators and Sampled by Red Pine during the 2016 and 2018 Sampling Programs (> 2.0 g/t Au)

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S188c5  | 43.07                    | 43.59                  | 0.52   | 13.37  | 669641 | 5317989 | 312.6 |
| S192    | 158.65                   | 159.93                 | 1.28   | 2.26   | 668281 | 5316521 | 224.7 |
| S192    | 160.29                   | 160.93                 | 0.64   | 3.77   | 668281 | 5316521 | 223.3 |
| S192    | 169.22                   | 171.75                 | 2.53   | 2.58   | 668281 | 5316521 | 213.5 |
| S192    | 179.83                   | 185.93                 | 6.1    | 27.84  | 668281 | 5316521 | 201.1 |
| S195    | 210.46                   | 211.23                 | 0.77   | 2.88   | 668294 | 5315565 | 160.1 |
| S196    | 221.28                   | 221.56                 | 0.28   | 2.13   | 668232 | 5315670 | 132.2 |
| S197    | 307.73                   | 308.76                 | 1.03   | 2.47   | 668179 | 5315769 | 39.3  |
| S201    | 183.64                   | 187.76                 | 4.12   | 2.16   | 668193 | 5316161 | 184.9 |
| S201    | 200.25                   | 201.17                 | 0.92   | 2.67   | 668193 | 5316161 | 169.9 |
| S203    | 178.49                   | 179.19                 | 0.7    | 2.06   | 668180 | 5316212 | 203.9 |
| S203    | 182.51                   | 183.03                 | 0.52   | 6.86   | 668180 | 5316212 | 200   |
| S203    | 185.93                   | 188.55                 | 2.62   | 2.04   | 668180 | 5316212 | 195.5 |
| S203    | 190.8                    | 191.11                 | 0.31   | 3.02   | 668180 | 5316212 | 191.8 |
| S203    | 216.01                   | 217.47                 | 1.46   | 2.34   | 668180 | 5316212 | 166   |
| S204    | 159.93                   | 162.67                 | 2.74   | 3.1    | 668161 | 5316251 | 219.8 |
| S204    | 164.29                   | 170.9                  | 6.61   | 10.06  | 668161 | 5316251 | 213.5 |
| S204    | 172.21                   | 174.96                 | 2.75   | 2.87   | 668161 | 5316251 | 207.5 |
| S205    | 184.25                   | 185.93                 | 1.68   | 2.61   | 668262 | 5316265 | 194.7 |
| S206    | 167.94                   | 176.33                 | 8.39   | 2.23   | 668225 | 5316280 | 203.6 |
| S206    | 177.06                   | 177.39                 | 0.33   | 2.88   | 668225 | 5316280 | 198.6 |
| S206    | 178.31                   | 179.22                 | 0.91   | 2.06   | 668225 | 5316280 | 197   |
| S208    | 216.41                   | 225.55                 | 9.14   | 2.49   | 668287 | 5316320 | 154   |
| S209    | 159.72                   | 164.62                 | 4.9    | 2.42   | 668241 | 5316329 | 210.5 |
| S210    | 150.66                   | 152.19                 | 1.53   | 2.61   | 668190 | 5316340 | 221.1 |
| S210    | 197.51                   | 199.03                 | 1.52   | 2.4    | 668190 | 5316340 | 174.3 |
| S211    | 167.49                   | 168.1                  | 0.61   | 17.42  | 668279 | 5316376 | 202.6 |
| S211    | 185.62                   | 189.43                 | 3.81   | 2.59   | 668279 | 5316376 | 182.8 |
| S211    | 199.8                    | 200.25                 | 0.45   | 2.74   | 668279 | 5316376 | 170.3 |
| S211    | 201.93                   | 203.15                 | 1.22   | 2.26   | 668279 | 5316376 | 167.8 |
| S212    | 67.67                    | 69.86                  | 2.19   | 7.95   | 668249 | 5316415 | 303.6 |
| S213    | 140.88                   | 142.4                  | 1.52   | 2.13   | 668329 | 5316692 | 235.3 |
| S213    | 150.57                   | 156.36                 | 5.79   | 2.09   | 668329 | 5316692 | 223.4 |
| S214    | 83.82                    | 90.22                  | 6.4    | 2.32   | 668324 | 5316379 | 288.3 |
| S214    | 93.12                    | 93.88                  | 0.76   | 3.7    | 668324 | 5316379 | 281.9 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | х      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S214    | 192.63                   | 194.77                 | 2.14   | 3.27   | 668324 | 5316382 | 181.7 |
| S214    | 205.13                   | 210.01                 | 4.88   | 5      | 668324 | 5316383 | 167.8 |
| S215    | 144.17                   | 145.69                 | 1.52   | 2.47   | 668219 | 5316477 | 234.4 |
| S215    | 153.01                   | 157.58                 | 4.57   | 2.02   | 668219 | 5316478 | 224.1 |
| S216    | 157.58                   | 158.19                 | 0.61   | 3.29   | 668335 | 5316638 | 209.4 |
| S217    | 76.66                    | 77.27                  | 0.61   | 3.18   | 669550 | 5318080 | 296.5 |
| S219    | 16.15                    | 16.92                  | 0.77   | 13.51  | 669593 | 5318052 | 351.7 |
| S220    | 66.84                    | 67.76                  | 0.92   | 2.4    | 669629 | 5318040 | 301.8 |
| S221    | 101.19                   | 102.72                 | 1.53   | 2.3    | 669659 | 5318026 | 262.1 |
| S226    | 24.99                    | 26.82                  | 1.83   | 3.84   | 669517 | 5318038 | 341   |
| S227    | 16.76                    | 17.07                  | 0.31   | 17.52  | 667901 | 5316086 | 343.7 |
| S229    | 103.78                   | 104.55                 | 0.77   | 5.79   | 667981 | 5316087 | 275.9 |
| S229    | 104.85                   | 112.17                 | 7.32   | 2.55   | 667981 | 5316087 | 271.5 |
| S230    | 153.68                   | 156.76                 | 3.08   | 2.27   | 668038 | 5316098 | 228.5 |
| S231    | 179.37                   | 181.2                  | 1.83   | 2.06   | 668100 | 5316098 | 199.2 |
| S231    | 195.5                    | 196.2                  | 0.7    | 2.26   | 668100 | 5316098 | 183.7 |
| S232    | 187.21                   | 201.17                 | 13.96  | 4.93   | 668160 | 5316111 | 172.6 |
| S232    | 202.08                   | 212.6                  | 10.52  | 9.38   | 668160 | 5316112 | 159.5 |
| S233    | 9.14                     | 11.28                  | 2.14   | 3.41   | 668165 | 5315986 | 353.6 |
| S233    | 227.62                   | 230.49                 | 2.87   | 2.14   | 668165 | 5315986 | 134.7 |
| S233    | 232.2                    | 233.42                 | 1.22   | 2.19   | 668165 | 5315986 | 131   |
| S233    | 234.39                   | 235.92                 | 1.53   | 2.74   | 668165 | 5315986 | 128.6 |
| S233    | 256.21                   | 262.25                 | 6.04   | 2.96   | 668165 | 5315986 | 104.5 |
| S234    | 200.31                   | 213.66                 | 13.35  | 2.76   | 668111 | 5315979 | 160.7 |
| S234    | 216.35                   | 217.26                 | 0.91   | 5.28   | 668111 | 5315979 | 150.9 |
| S234    | 226.92                   | 227.9                  | 0.98   | 2.13   | 668111 | 5315979 | 140.3 |
| S235    | 156.67                   | 158.5                  | 1.83   | 2.32   | 668040 | 5315981 | 216.9 |
| S235    | 175.56                   | 177.39                 | 1.83   | 2.33   | 668040 | 5315982 | 198   |
| S235    | 178.31                   | 179.22                 | 0.91   | 2.74   | 668040 | 5315982 | 195.7 |
| S237    | 63.25                    | 63.86                  | 0.61   | 2.61   | 667952 | 5315968 | 306.1 |
| S237    | 109.58                   | 111.1                  | 1.52   | 2.74   | 667951 | 5315972 | 259.5 |
| S239    | 86.56                    | 88.09                  | 1.53   | 2.67   | 667897 | 5315965 | 283.5 |
| S239    | 89.61                    | 91.14                  | 1.53   | 3.84   | 667897 | 5315965 | 280.4 |
| S240    | 47.55                    | 55.78                  | 8.23   | 4.1    | 668022 | 5316338 | 321.1 |
| S240    | 56.39                    | 63.09                  | 6.7    | 16.4   | 668022 | 5316338 | 313   |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S241    | 77.11                    | 78.03                  | 0.92   | 2.26   | 668053 | 5316339 | 293.6 |
| S241    | 81.69                    | 92.05                  | 10.36  | 3.41   | 668053 | 5316339 | 284.3 |
| S242    | 94.18                    | 98.76                  | 4.58   | 2.11   | 667866 | 5315840 | 259.7 |
| S244    | 145.88                   | 149.32                 | 3.44   | 2.01   | 667988 | 5315841 | 197.9 |
| S244    | 153.77                   | 163.83                 | 10.06  | 2.46   | 667987 | 5315840 | 186.7 |
| S244    | 165.75                   | 168.58                 | 2.83   | 2.66   | 667987 | 5315840 | 178.3 |
| S244    | 170.11                   | 172.85                 | 2.74   | 2.45   | 667987 | 5315840 | 174   |
| S244    | 174.38                   | 175.9                  | 1.52   | 2.33   | 667987 | 5315840 | 170.4 |
| S246    | 236.68                   | 242.32                 | 5.64   | 4.21   | 668108 | 5315857 | 106.1 |
| S246    | 244.75                   | 245.67                 | 0.92   | 2.06   | 668108 | 5315858 | 100.4 |
| S246    | 248.87                   | 254.51                 | 5.64   | 2.49   | 668108 | 5315858 | 93.9  |
| S247    | 85.16                    | 95.25                  | 10.09  | 3.29   | 668168 | 5315850 | 261.3 |
| S247    | 96.62                    | 101.77                 | 5.15   | 3.74   | 668168 | 5315850 | 252.3 |
| S247    | 127.41                   | 129.69                 | 2.28   | 2.42   | 668167 | 5315852 | 223   |
| S247    | 256.21                   | 258.78                 | 2.57   | 3.64   | 668160 | 5315860 | 94.5  |
| S247    | 288.95                   | 294.44                 | 5.49   | 2.3    | 668159 | 5315861 | 60.3  |
| S255    | 133.81                   | 137.16                 | 3.35   | 2.41   | 667870 | 5315717 | 210   |
| S261    | 125.58                   | 128.11                 | 2.53   | 2.15   | 668300 | 5316679 | 223.8 |
| S261    | 130.76                   | 135.33                 | 4.57   | 2.35   | 668300 | 5316679 | 217.6 |
| S261    | 139.9                    | 141.76                 | 1.86   | 2.15   | 668300 | 5316679 | 209.8 |
| S263    | 79.86                    | 80.77                  | 0.91   | 2.33   | 668003 | 5316216 | 296.5 |
| S265    | 106.38                   | 114.45                 | 8.07   | 2.12   | 668081 | 5316283 | 269.9 |
| S265    | 117.04                   | 118.57                 | 1.53   | 2.47   | 668081 | 5316284 | 262.5 |
| S265    | 120.09                   | 128.63                 | 8.54   | 2.75   | 668080 | 5316284 | 256   |
| S266    | 122.74                   | 126.77                 | 4.03   | 2.11   | 668271 | 5316636 | 229.7 |
| S267    | 141.82                   | 143.26                 | 1.44   | 2.67   | 668265 | 5316593 | 231.7 |
| S268    | 51.97                    | 55.78                  | 3.81   | 3.8    | 668220 | 5316633 | 303.4 |
| S268    | 60.2                     | 61.72                  | 1.52   | 2.54   | 668220 | 5316633 | 296.3 |
| S268    | 141.73                   | 142.43                 | 0.7    | 8.37   | 668220 | 5316633 | 215.2 |
| S272    | 174.56                   | 177.7                  | 3.14   | 2.22   | 668128 | 5316160 | 201.9 |
| S272    | 185.47                   | 190.26                 | 4.79   | 2.16   | 668128 | 5316160 | 190.2 |
| S274    | 216.38                   | 228.72                 | 12.34  | 2.2    | 668154 | 5316050 | 146.2 |
| S274    | 233.96                   | 240.82                 | 6.86   | 4.92   | 668153 | 5316051 | 131.4 |
| S276    | 62.48                    | 63.4                   | 0.92   | 3.57   | 668193 | 5316110 | 299.2 |
| S276    | 198.73                   | 199.95                 | 1.22   | 2.19   | 668190 | 5316114 | 162.9 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S276    | 226.47                   | 229.82                 | 3.35   | 2.22   | 668189 | 5316115 | 134.2 |
| S277    | 180.11                   | 180.9                  | 0.79   | 2.95   | 668085 | 5316035 | 198.2 |
| S277    | 190.8                    | 193.09                 | 2.29   | 2.03   | 668085 | 5316034 | 186.7 |
| S277    | 194.61                   | 197.66                 | 3.05   | 3.53   | 668084 | 5316034 | 182.6 |
| S277    | 198.88                   | 200.41                 | 1.53   | 2.33   | 668084 | 5316034 | 179.1 |
| S278    | 117.35                   | 119.79                 | 2.44   | 2.5    | 668059 | 5316037 | 263.2 |
| S278    | 170.08                   | 171.6                  | 1.52   | 2.06   | 668058 | 5316040 | 211   |
| S278    | 179.53                   | 181.2                  | 1.67   | 2.33   | 668058 | 5316040 | 201.5 |
| S279    | 146.55                   | 163.1                  | 16.55  | 3.4    | 668021 | 5316035 | 226.2 |
| S280    | 181.36                   | 183.18                 | 1.82   | 5.19   | 668136 | 5315984 | 182.7 |
| S280    | 224.33                   | 235.31                 | 10.98  | 3.67   | 668136 | 5315986 | 135.2 |
| S280    | 235.92                   | 237.13                 | 1.21   | 3.63   | 668136 | 5315987 | 128.5 |
| S280    | 240.49                   | 244.3                  | 3.81   | 6.52   | 668136 | 5315987 | 122.6 |
| S280    | 260.76                   | 261.52                 | 0.76   | 4.99   | 668137 | 5315988 | 103.9 |
| S281    | 185.01                   | 202.69                 | 17.68  | 2.26   | 668070 | 5315973 | 180.6 |
| S282    | 209.25                   | 218.97                 | 9.72   | 2.29   | 668107 | 5315918 | 139.4 |
| S282    | 220.49                   | 225.77                 | 5.28   | 5      | 668107 | 5315918 | 130.4 |
| S283    | 223.14                   | 231.65                 | 8.51   | 2.43   | 668146 | 5315924 | 119.7 |
| S283    | 246.28                   | 255.27                 | 8.99   | 2.41   | 668147 | 5315926 | 96.4  |
| S284    | 156.36                   | 157.89                 | 1.53   | 10.49  | 668171 | 5315919 | 188.3 |
| S284    | 194.46                   | 197.36                 | 2.9    | 3.13   | 668171 | 5315919 | 149.5 |
| S284    | 224.33                   | 225.55                 | 1.22   | 2.26   | 668172 | 5315919 | 120.5 |
| S284    | 229.51                   | 233.93                 | 4.42   | 2.22   | 668172 | 5315919 | 113.7 |
| S285    | 127.41                   | 135.94                 | 8.53   | 5.6    | 668052 | 5316159 | 246.6 |
| S285    | 137.77                   | 143.87                 | 6.1    | 4.87   | 668052 | 5316159 | 237.5 |
| S286    | 115.98                   | 118.57                 | 2.59   | 2.29   | 668089 | 5316160 | 263.7 |
| S286    | 156.06                   | 159.56                 | 3.5    | 2.1    | 668088 | 5316160 | 223.2 |
| S287    | 19.2                     | 20.42                  | 1.22   | 3.02   | 667972 | 5315897 | 336.3 |
| S287    | 50.44                    | 54.56                  | 4.12   | 2.44   | 667972 | 5315898 | 303.6 |
| S287    | 132.59                   | 134.84                 | 2.25   | 22.8   | 667971 | 5315900 | 222.4 |
| S287    | 145.69                   | 146.61                 | 0.92   | 3.02   | 667970 | 5315900 | 210   |
| S288    | 176.48                   | 190.04                 | 13.56  | 2.15   | 668008 | 5315784 | 162.2 |
| S288    | 195.68                   | 198.42                 | 2.74   | 2.04   | 668008 | 5315784 | 148.4 |
| S290    | 219.46                   | 248.72                 | 29.26  | 2.26   | 668078 | 5315790 | 111.3 |
| S291    | 23.47                    | 26.82                  | 3.35   | 3.26   | 668191 | 5315364 | 327.8 |

| Hole ID  | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|----------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| S291     | 36.42                    | 37.34                  | 0.92   | 3.43   | 668183 | 5315360 | 319.5 |
| S293     | 87.78                    | 89.31                  | 1.53   | 2.13   | 668243 | 5315101 | 279.4 |
| S300     | 81.38                    | 86.87                  | 5.49   | 2.82   | 667929 | 5315201 | 287.2 |
| S302     | 39.44                    | 40.54                  | 1.1    | 3.99   | 667841 | 5314627 | 312.1 |
| S306     | 39.01                    | 39.93                  | 0.92   | 2.33   | 667968 | 5315200 | 312.4 |
| S307     | 249.54                   | 252.68                 | 3.14   | 3.09   | 668253 | 5315876 | 99.7  |
| S307     | 292.15                   | 316.08                 | 23.93  | 3.21   | 668253 | 5315881 | 46.9  |
| S307     | 329.79                   | 331.01                 | 1.22   | 2.47   | 668253 | 5315884 | 20.8  |
| S308     | 90.83                    | 92.05                  | 1.22   | 12.55  | 668241 | 5315924 | 257.3 |
| S308     | 109.73                   | 112.01                 | 2.28   | 2.94   | 668242 | 5315925 | 237.9 |
| S308     | 168.86                   | 169.77                 | 0.91   | 2.67   | 668244 | 5315930 | 179.7 |
| S308     | 171.6                    | 173.43                 | 1.83   | 2.55   | 668244 | 5315931 | 176.5 |
| S308     | 246.43                   | 247.65                 | 1.22   | 3.22   | 668246 | 5315937 | 102.3 |
| S309     | 71.02                    | 75.74                  | 4.72   | 2.31   | 668209 | 5315941 | 285.1 |
| S310     | 72.85                    | 74.07                  | 1.22   | 3.5    | 668206 | 5315864 | 277.9 |
| S310     | 76.2                     | 77.72                  | 1.52   | 2.26   | 668206 | 5315864 | 274.4 |
| S310     | 313.64                   | 316.69                 | 3.05   | 2.87   | 668205 | 5315868 | 36.2  |
| S311     | 265.79                   | 273.1                  | 7.31   | 2.57   | 668181 | 5315805 | 80.5  |
| S312     | 241.86                   | 244.14                 | 2.28   | 2.14   | 668128 | 5315745 | 102.7 |
| S314     | 99.67                    | 105.77                 | 6.1    | 2.24   | 668152 | 5315666 | 259.6 |
| S316     | 323.39                   | 325.83                 | 2.44   | 2.11   | 668234 | 5315809 | 26.2  |
| S316     | 330.71                   | 344.58                 | 13.87  | 2.4    | 668234 | 5315809 | 13.2  |
| U0002L6  | 5.33                     | 5.94                   | 0.61   | 2.91   | 668432 | 5316466 | 116.2 |
| U0011AL6 | 1.22                     | 2.77                   | 1.55   | 2.41   | 668390 | 5316408 | 140.1 |
| U0011AL6 | 22.56                    | 28.04                  | 5.48   | 3.32   | 668410 | 5316396 | 140.1 |
| U0014L6  | 0                        | 2.87                   | 2.87   | 6.96   | 668386 | 5316420 | 141.6 |
| U0019L6  | 0                        | 5.49                   | 5.49   | 7.37   | 668385 | 5316396 | 139.6 |
| U0019L6  | 17.43                    | 21.18                  | 3.75   | 3.36   | 668400 | 5316390 | 140.2 |
| U0020L6  | 0                        | 2.13                   | 2.13   | 10.1   | 668379 | 5316397 | 139.4 |
| U0026L6  | 6.55                     | 7.25                   | 0.7    | 2.22   | 668372 | 5316376 | 131.6 |
| U0265L3  | 30.94                    | 33.22                  | 2.28   | 5.18   | 668366 | 5317027 | 217.9 |
| U0324L3  | 23.77                    | 25.3                   | 1.53   | 2.13   | 668333 | 5316821 | 211.3 |
| U0324L3  | 25.91                    | 30.18                  | 4.27   | 4.64   | 668333 | 5316824 | 208.8 |
| U0348L5  | 75.44                    | 76.87                  | 1.43   | 3.13   | 668491 | 5316609 | 92.9  |
| U0354L5  | 29.26                    | 29.57                  | 0.31   | 7.54   | 668433 | 5316655 | 129.5 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0354L5 | 29.87                    | 31.24                  | 1.37   | 5.94   | 668432 | 5316655 | 128.6 |
| U0355L5 | 34.75                    | 36.58                  | 1.83   | 2.63   | 668440 | 5316656 | 119.2 |
| U0360L5 | 0.61                     | 2.9                    | 2.29   | 9.7    | 668378 | 5316442 | 154.4 |
| U0361L5 | 0                        | 6.86                   | 6.86   | 16.51  | 668370 | 5316412 | 154.6 |
| U0361L5 | 10.36                    | 11.28                  | 0.92   | 9.6    | 668362 | 5316413 | 154.6 |
| U0361L5 | 24.08                    | 26.52                  | 2.44   | 2.07   | 668348 | 5316416 | 154.6 |
| U0363L5 | 2.29                     | 7.62                   | 5.33   | 5.62   | 668353 | 5316353 | 154.9 |
| U0363L5 | 41.76                    | 42.52                  | 0.76   | 2.06   | 668318 | 5316364 | 154.9 |
| U0363L5 | 45.42                    | 46.48                  | 1.06   | 2.62   | 668314 | 5316365 | 154.9 |
| U0363L5 | 46.94                    | 49.68                  | 2.74   | 3.03   | 668312 | 5316366 | 154.9 |
| U0443L3 | 14.63                    | 22.25                  | 7.62   | 9.42   | 668347 | 5316850 | 200.8 |
| U0443L3 | 33.83                    | 36.27                  | 2.44   | 2.51   | 668352 | 5316838 | 210.6 |
| U0446L3 | 14.63                    | 14.94                  | 0.31   | 12.69  | 668353 | 5316870 | 199.3 |
| U0446L3 | 15.7                     | 16.76                  | 1.06   | 42.51  | 668354 | 5316871 | 200.1 |
| U0447L3 | 30.18                    | 31.24                  | 1.06   | 3.76   | 668405 | 5317313 | 230.5 |
| U0448L3 | 2.44                     | 2.74                   | 0.3    | 6.86   | 668442 | 5317312 | 232.8 |
| U0450L3 | 2.29                     | 3.05                   | 0.76   | 2.06   | 668378 | 5316851 | 191.5 |
| U0451L5 | 0.91                     | 6.1                    | 5.19   | 4.32   | 668396 | 5316524 | 154.3 |
| U0452L3 | 1.52                     | 2.29                   | 0.77   | 2.74   | 668374 | 5316851 | 192.1 |
| U0452L5 | 1.52                     | 3.96                   | 2.44   | 3.14   | 668399 | 5316522 | 151   |
| U0452L5 | 4.57                     | 6.86                   | 2.29   | 2.98   | 668397 | 5316523 | 148.4 |
| U0453L5 | 0                        | 4.88                   | 4.88   | 9.14   | 668403 | 5316521 | 154.3 |
| U0453L5 | 7.92                     | 8.53                   | 0.61   | 2.74   | 668409 | 5316520 | 154.3 |
| U0454L5 | 3.05                     | 4.88                   | 1.83   | 15.47  | 668395 | 5316516 | 154.3 |
| U0454L5 | 11.58                    | 14.02                  | 2.44   | 2.63   | 668387 | 5316519 | 154.3 |
| U0455L5 | 1.83                     | 3.96                   | 2.13   | 16.25  | 668399 | 5316515 | 150.8 |
| U0456L5 | 0.61                     | 7.16                   | 6.55   | 12.81  | 668406 | 5316513 | 154.3 |
| U0457L5 | 3.96                     | 6.1                    | 2.14   | 6.6    | 668394 | 5316508 | 154.4 |
| U0457L5 | 8.23                     | 9.14                   | 0.91   | 2.4    | 668391 | 5316509 | 154.4 |
| U0457L5 | 11.28                    | 12.5                   | 1.22   | 4.11   | 668388 | 5316510 | 154.4 |
| U0458L5 | 2.9                      | 4.42                   | 1.52   | 2.75   | 668397 | 5316507 | 150.2 |
| U0459L5 | 5.33                     | 7.62                   | 2.29   | 7.72   | 668407 | 5316504 | 154.4 |
| U0461L5 | 0.61                     | 10.67                  | 10.06  | 7.4    | 668404 | 5316498 | 154.3 |
| U0465L5 | 17.83                    | 18.59                  | 0.76   | 3.09   | 668376 | 5316491 | 154.4 |
| U0469L5 | 0.91                     | 3.2                    | 2.29   | 3.52   | 668391 | 5316477 | 151.7 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0471L5 | 0.61                     | 3.2                    | 2.59   | 3.99   | 668389 | 5316470 | 151.9 |
| U0475L5 | 2.13                     | 3.05                   | 0.92   | 2.06   | 668394 | 5316461 | 154.4 |
| U0475L5 | 3.66                     | 18.59                  | 14.93  | 6.09   | 668402 | 5316459 | 154.4 |
| U0478L5 | 2.74                     | 13.41                  | 10.67  | 7.92   | 668397 | 5316452 | 154.9 |
| U0479L5 | 0                        | 3.05                   | 3.05   | 2.08   | 668383 | 5316448 | 154.6 |
| U0479L5 | 3.96                     | 4.42                   | 0.46   | 2.4    | 668380 | 5316449 | 154.6 |
| U0484L5 | 1.83                     | 7.01                   | 5.18   | 6.35   | 668377 | 5316434 | 154.5 |
| U0484L5 | 7.92                     | 9.14                   | 1.22   | 2.23   | 668373 | 5316435 | 154.5 |
| U0484L5 | 14.17                    | 14.94                  | 0.77   | 2.74   | 668367 | 5316437 | 154.5 |
| U0484L5 | 18.29                    | 23.47                  | 5.18   | 4.42   | 668361 | 5316438 | 154.5 |
| U0484L5 | 32.16                    | 32.61                  | 0.45   | 5.83   | 668350 | 5316441 | 154.5 |
| U0485L5 | 3.66                     | 4.88                   | 1.22   | 3.43   | 668379 | 5316434 | 149.8 |
| U0485L5 | 5.49                     | 8.23                   | 2.74   | 10.64  | 668378 | 5316434 | 147.6 |
| U0485L5 | 16.31                    | 19.81                  | 3.5    | 7.26   | 668372 | 5316435 | 137.9 |
| U0488L5 | 1.83                     | 7.62                   | 5.79   | 3.17   | 668378 | 5316426 | 149.4 |
| U0488L5 | 16.15                    | 16.61                  | 0.46   | 2.74   | 668372 | 5316427 | 139.3 |
| U0490L5 | 3.35                     | 10.67                  | 7.32   | 11.2   | 668370 | 5316420 | 154.5 |
| U0490L5 | 11.89                    | 12.5                   | 0.61   | 3.43   | 668365 | 5316421 | 154.5 |
| U0490L5 | 25.15                    | 28.35                  | 3.2    | 3.76   | 668351 | 5316424 | 154.5 |
| U0491L5 | 2.44                     | 8.23                   | 5.79   | 12.98  | 668376 | 5316419 | 148.8 |
| U0491L5 | 20.12                    | 20.73                  | 0.61   | 5.49   | 668370 | 5316420 | 135.1 |
| U0492L5 | 12.19                    | 14.48                  | 2.29   | 2.18   | 668393 | 5316414 | 154.5 |
| U0492L5 | 17.37                    | 22.86                  | 5.49   | 5.38   | 668399 | 5316413 | 154.5 |
| U0493L5 | 0.61                     | 8.23                   | 7.62   | 4.39   | 668374 | 5316411 | 149.9 |
| U0493L5 | 17.37                    | 18.29                  | 0.92   | 2.06   | 668367 | 5316412 | 138.5 |
| U0493L5 | 19.2                     | 20.12                  | 0.92   | 2.06   | 668366 | 5316413 | 136.9 |
| U0494L5 | 0                        | 0.61                   | 0.61   | 2.4    | 668378 | 5316410 | 154.4 |
| U0494L5 | 2.29                     | 3.05                   | 0.76   | 2.74   | 668381 | 5316409 | 154.4 |
| U0494L5 | 18.29                    | 19.2                   | 0.91   | 2.4    | 668396 | 5316406 | 154.4 |
| U0495L5 | 0                        | 7.32                   | 7.32   | 13.49  | 668371 | 5316404 | 154.5 |
| U0495L5 | 8.23                     | 9.3                    | 1.07   | 2.06   | 668366 | 5316405 | 154.5 |
| U0495L5 | 16.03                    | 16.92                  | 0.89   | 3.49   | 668358 | 5316408 | 154.5 |
| U0495L5 | 17.22                    | 18.59                  | 1.37   | 3.93   | 668357 | 5316408 | 154.5 |
| U0499L5 | 0.3                      | 4.27                   | 3.97   | 9.59   | 668372 | 5316396 | 151.8 |
| U0499L5 | 5.49                     | 6.4                    | 0.91   | 2.06   | 668370 | 5316397 | 148.7 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0499L5 | 15.24                    | 15.54                  | 0.3    | 5.83   | 668365 | 5316398 | 140.8 |
| U0503L5 | 0                        | 3.05                   | 3.05   | 4.85   | 668375 | 5316388 | 154.6 |
| U0503L5 | 6.4                      | 7.92                   | 1.52   | 2.33   | 668380 | 5316386 | 154.6 |
| U0506L5 | 0                        | 10.67                  | 10.67  | 3.82   | 668362 | 5316376 | 154.5 |
| U0506L5 | 16.15                    | 18.29                  | 2.14   | 2.23   | 668351 | 5316379 | 154.5 |
| U0506L5 | 22.86                    | 25.91                  | 3.05   | 3.57   | 668344 | 5316381 | 154.5 |
| U0507L5 | 0.61                     | 7.32                   | 6.71   | 3.69   | 668365 | 5316375 | 150.5 |
| U0507L5 | 8.84                     | 12.5                   | 3.66   | 12.91  | 668361 | 5316375 | 144.9 |
| U0507L5 | 14.02                    | 18.44                  | 4.42   | 2.13   | 668358 | 5316376 | 140.2 |
| U0508L5 | 14.02                    | 16.46                  | 2.44   | 2.32   | 668384 | 5316370 | 154.5 |
| U0509L5 | 4.88                     | 10.52                  | 5.64   | 4.69   | 668358 | 5316368 | 154.8 |
| U0509L5 | 29.72                    | 30.48                  | 0.76   | 2.06   | 668336 | 5316374 | 154.8 |
| U0509L5 | 35.97                    | 36.58                  | 0.61   | 3.09   | 668330 | 5316375 | 154.8 |
| U0511L5 | 0                        | 1.52                   | 1.52   | 2.23   | 668368 | 5316366 | 154.8 |
| U0511L5 | 7.92                     | 8.53                   | 0.61   | 4.79   | 668375 | 5316364 | 154.8 |
| U0512L5 | 4.57                     | 7.62                   | 3.05   | 8.89   | 668357 | 5316361 | 155   |
| U0512L5 | 32                       | 32.77                  | 0.77   | 3.09   | 668332 | 5316369 | 155   |
| U0512L5 | 37.64                    | 38.4                   | 0.76   | 2.74   | 668327 | 5316371 | 155   |
| U0513L5 | 2.44                     | 3.51                   | 1.07   | 2.06   | 668363 | 5316360 | 151.3 |
| U0513L5 | 4.27                     | 6.1                    | 1.83   | 2.56   | 668362 | 5316360 | 149.4 |
| U0513L5 | 6.86                     | 10.06                  | 3.2    | 2.54   | 668360 | 5316360 | 146.6 |
| U0513L5 | 12.04                    | 12.8                   | 0.76   | 25.37  | 668358 | 5316361 | 143.1 |
| U0513L5 | 17.37                    | 17.98                  | 0.61   | 4.46   | 668356 | 5316362 | 138.6 |
| U0514L5 | 0                        | 0.61                   | 0.61   | 2.74   | 668365 | 5316358 | 155   |
| U0514L5 | 5.33                     | 7.92                   | 2.59   | 2.02   | 668371 | 5316356 | 155   |
| U0515L5 | 0                        | 1.52                   | 1.52   | 2.23   | 668365 | 5316351 | 154.9 |
| U0525L5 | 6.86                     | 13.72                  | 6.86   | 6.46   | 668339 | 5316318 | 155.1 |
| U0531L5 | 3.05                     | 3.35                   | 0.3    | 2.4    | 668404 | 5316544 | 153.9 |
| U0532L5 | 0.3                      | 0.91                   | 0.61   | 2.06   | 668398 | 5316545 | 153.9 |
| U0532L5 | 11.98                    | 13.72                  | 1.74   | 2.79   | 668386 | 5316547 | 153.9 |
| U0532L5 | 15.85                    | 19.2                   | 3.35   | 2.93   | 668382 | 5316548 | 153.9 |
| U0533L5 | 0                        | 1.22                   | 1.22   | 5.14   | 668402 | 5316560 | 153.9 |
| U0534L5 | 0                        | 2.13                   | 2.13   | 2.89   | 668402 | 5316576 | 153.9 |
| U0536L5 | 6.4                      | 7.01                   | 0.61   | 3.77   | 668408 | 5316591 | 153.9 |
| U0536L5 | 9.45                     | 10.36                  | 0.91   | 7.89   | 668411 | 5316590 | 153.9 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0536L5 | 11.89                    | 12.5                   | 0.61   | 2.74   | 668413 | 5316589 | 153.9 |
| U0537L5 | 0                        | 1.83                   | 1.83   | 2.63   | 668401 | 5316608 | 153.8 |
| U0537L5 | 4.57                     | 5.33                   | 0.76   | 2.74   | 668405 | 5316607 | 153.8 |
| U0537L5 | 10.67                    | 13.41                  | 2.74   | 2.24   | 668412 | 5316605 | 153.8 |
| U0538L5 | 6.4                      | 6.71                   | 0.31   | 5.49   | 668392 | 5316610 | 153.9 |
| U0539L5 | 9.14                     | 10.06                  | 0.92   | 2.06   | 668404 | 5316620 | 153.8 |
| U0539L5 | 11.28                    | 11.73                  | 0.45   | 18.17  | 668406 | 5316620 | 153.8 |
| U0540L5 | 24.08                    | 24.99                  | 0.91   | 2.06   | 668369 | 5316710 | 172.4 |
| U0541L5 | 16                       | 19.2                   | 3.2    | 3.84   | 668370 | 5316728 | 172.9 |
| U0542L5 | 25.3                     | 29.57                  | 4.27   | 2.18   | 668372 | 5316750 | 173.4 |
| U0543L5 | 35.05                    | 36.27                  | 1.22   | 2.4    | 668356 | 5316709 | 184.8 |
| U0545L5 | 42.98                    | 43.89                  | 0.91   | 4.36   | 668357 | 5316753 | 192.3 |
| U0548L3 | 3.2                      | 6.4                    | 3.2    | 6.48   | 668357 | 5316975 | 224.2 |
| U0548L3 | 7.92                     | 9.3                    | 1.38   | 3.07   | 668354 | 5316976 | 221.3 |
| U0548L3 | 15.39                    | 15.85                  | 0.46   | 3.09   | 668350 | 5316976 | 216   |
| U0552L3 | 20.42                    | 21.34                  | 0.92   | 24.69  | 668368 | 5316996 | 219.3 |
| U0552L3 | 22.1                     | 24.08                  | 1.98   | 18.47  | 668367 | 5316998 | 218.4 |
| U0552L3 | 26.97                    | 27.74                  | 0.77   | 2.06   | 668366 | 5317001 | 216.5 |
| U0552L3 | 29.26                    | 31.85                  | 2.59   | 3.31   | 668365 | 5317004 | 215.1 |
| U0553L3 | 10.82                    | 12.19                  | 1.37   | 2.85   | 668371 | 5316985 | 219.6 |
| U0553L3 | 19.05                    | 21.49                  | 2.44   | 32.83  | 668369 | 5316991 | 213.2 |
| U0553L3 | 22.1                     | 24.69                  | 2.59   | 11.57  | 668369 | 5316993 | 210.9 |
| U0553L3 | 25.6                     | 27.13                  | 1.53   | 5.02   | 668368 | 5316995 | 208.7 |
| U0553L3 | 30.33                    | 30.78                  | 0.45   | 2.4    | 668367 | 5316998 | 205.7 |
| U0554L3 | 13.72                    | 14.48                  | 0.76   | 2.74   | 668374 | 5316977 | 214   |
| U0554L3 | 18.9                     | 23.16                  | 4.26   | 10.14  | 668374 | 5316977 | 207.1 |
| U0555L3 | 22.71                    | 24.99                  | 2.28   | 2.05   | 668384 | 5316994 | 213.3 |
| U0555L3 | 28.35                    | 29.11                  | 0.76   | 3.09   | 668386 | 5316998 | 210.3 |
| U0558L7 | 22.25                    | 24.54                  | 2.29   | 2.3    | 668100 | 5316909 | 57.7  |
| U0558L7 | 31.39                    | 32.92                  | 1.53   | 7.13   | 668097 | 5316904 | 51.4  |
| U0562L7 | 44.81                    | 45.72                  | 0.91   | 6.51   | 668114 | 5316886 | 37.9  |
| U0566L5 | 13.72                    | 16.76                  | 3.04   | 14.89  | 668413 | 5316713 | 154   |
| U0567L5 | 0                        | 4.57                   | 4.57   | 3.55   | 668390 | 5316710 | 154   |
| U0567L5 | 5.33                     | 6.1                    | 0.77   | 6.51   | 668387 | 5316711 | 154   |
| U0568L5 | 0                        | 3.35                   | 3.35   | 25.23  | 668393 | 5316690 | 155.6 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0568L5 | 14.02                    | 19.81                  | 5.79   | 2.21   | 668408 | 5316689 | 155.6 |
| U0568L5 | 22.1                     | 22.86                  | 0.76   | 2.06   | 668413 | 5316688 | 155.6 |
| U0571L5 | 0                        | 5.18                   | 5.18   | 11.47  | 668394 | 5316667 | 153.9 |
| U0571L5 | 6.4                      | 16.46                  | 10.06  | 2.6    | 668402 | 5316666 | 153.9 |
| U0572L5 | 0                        | 6.1                    | 6.1    | 2.26   | 668395 | 5316660 | 153.8 |
| U0572L5 | 12.34                    | 17.07                  | 4.73   | 5.38   | 668407 | 5316660 | 153.8 |
| U0574L5 | 0.76                     | 4.88                   | 4.12   | 2.26   | 668395 | 5316653 | 153.8 |
| U0574L5 | 13.11                    | 14.63                  | 1.52   | 9.36   | 668406 | 5316652 | 153.8 |
| U0587L3 | 9.14                     | 10.97                  | 1.83   | 2.63   | 668449 | 5317346 | 229.8 |
| U0587L3 | 15.24                    | 16.76                  | 1.52   | 2.12   | 668455 | 5317345 | 229.8 |
| U0588L3 | 22.56                    | 25.42                  | 2.86   | 4.53   | 668411 | 5317379 | 230.2 |
| U0589L3 | 17.53                    | 19.81                  | 2.28   | 8.72   | 668457 | 5317375 | 230.4 |
| U0589L3 | 29.87                    | 30.78                  | 0.91   | 3.09   | 668468 | 5317374 | 230.4 |
| U0590L3 | 19.35                    | 20.12                  | 0.77   | 2.06   | 668411 | 5317404 | 230.3 |
| U0590L3 | 24.87                    | 25.73                  | 0.86   | 109    | 668406 | 5317404 | 230.3 |
| U0593L3 | 1.52                     | 3.66                   | 2.14   | 23.13  | 668440 | 5317429 | 230.2 |
| U0593L3 | 4.57                     | 5.03                   | 0.46   | 9.26   | 668442 | 5317429 | 230.2 |
| U0593L3 | 29.11                    | 29.87                  | 0.76   | 2.4    | 668466 | 5317428 | 230.2 |
| U0593L7 | 19.96                    | 21.73                  | 1.77   | 15     | 668436 | 5316384 | 94    |
| U0593L7 | 22.04                    | 23.16                  | 1.12   | 2.23   | 668437 | 5316384 | 92.5  |
| U0598L7 | 10.18                    | 10.67                  | 0.49   | 2.06   | 668427 | 5316334 | 110.9 |
| U0605L5 | 10.97                    | 14.33                  | 3.36   | 2.46   | 668333 | 5316310 | 155   |
| U0607L5 | 0                        | 4.57                   | 4.57   | 2.1    | 668336 | 5316298 | 155   |
| U0607L5 | 9.75                     | 10.82                  | 1.07   | 2.21   | 668329 | 5316302 | 155   |
| U0607L5 | 12.8                     | 13.41                  | 0.61   | 2.4    | 668326 | 5316303 | 155   |
| U0609L5 | 1.52                     | 3.05                   | 1.53   | 2.81   | 668345 | 5316294 | 155   |
| U0610L5 | 0                        | 0.76                   | 0.76   | 2.4    | 668340 | 5316296 | 157   |
| U0613L5 | 0                        | 1.52                   | 1.52   | 2.47   | 668334 | 5316282 | 155.2 |
| U0614L5 | 21.34                    | 22.86                  | 1.52   | 2.21   | 668357 | 5316272 | 155.2 |
| U0615L5 | 0                        | 3.05                   | 3.05   | 3.13   | 668331 | 5316275 | 155.1 |
| U0615L5 | 4.57                     | 5.33                   | 0.76   | 2.74   | 668328 | 5316276 | 155.1 |
| U0615L5 | 14.78                    | 18.75                  | 3.97   | 2.44   | 668317 | 5316281 | 155.1 |
| U0617L5 | 0                        | 2.29                   | 2.29   | 2.05   | 668325 | 5316270 | 155.1 |
| U0617L5 | 4.75                     | 5.33                   | 0.58   | 3.09   | 668322 | 5316271 | 155.3 |
| U0617L5 | 9.45                     | 12.34                  | 2.89   | 3.2    | 668316 | 5316274 | 155.5 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0617L5 | 44.2                     | 44.65                  | 0.45   | 5.14   | 668287 | 5316290 | 156.7 |
| U0618L5 | 1.68                     | 3.66                   | 1.98   | 2.06   | 668325 | 5316270 | 152.2 |
| U0618L5 | 8.53                     | 9.14                   | 0.61   | 2.06   | 668322 | 5316271 | 146.8 |
| U0618L5 | 10.06                    | 11.28                  | 1.22   | 2.06   | 668321 | 5316272 | 145.3 |
| U0621L5 | 0                        | 3.05                   | 3.05   | 4.72   | 668324 | 5316262 | 155.1 |
| U0621L5 | 3.81                     | 7.62                   | 3.81   | 6.81   | 668320 | 5316264 | 155.1 |
| U0621L5 | 8.23                     | 10.67                  | 2.44   | 2.43   | 668317 | 5316265 | 155.1 |
| U0621L5 | 12.19                    | 13.72                  | 1.53   | 2.05   | 668313 | 5316267 | 155.1 |
| U0622L5 | 0.76                     | 3.05                   | 2.29   | 3.44   | 668330 | 5316259 | 155.1 |
| U0623L5 | 0                        | 1.98                   | 1.98   | 3.46   | 668321 | 5316254 | 155.2 |
| U0623L5 | 3.66                     | 8.23                   | 4.57   | 3.46   | 668317 | 5316257 | 155.2 |
| U0623L5 | 8.84                     | 11.58                  | 2.74   | 2.64   | 668313 | 5316258 | 155.2 |
| U0624L5 | 17.07                    | 17.98                  | 0.91   | 2.4    | 668341 | 5316245 | 155.2 |
| U0627L5 | 0                        | 3.66                   | 3.66   | 8.97   | 668312 | 5316242 | 155.3 |
| U0627L5 | 4.57                     | 7.47                   | 2.9    | 3.61   | 668309 | 5316244 | 155.3 |
| U0627L5 | 8.08                     | 8.38                   | 0.3    | 3.43   | 668307 | 5316245 | 155.3 |
| U0629L5 | 13.72                    | 16                     | 2.28   | 4.2    | 668332 | 5316233 | 155.3 |
| U0631L5 | 1.83                     | 3.66                   | 1.83   | 2.07   | 668312 | 5316235 | 155.2 |
| U0631L5 | 8.84                     | 11.28                  | 2.44   | 6.09   | 668305 | 5316238 | 155.2 |
| U0631L5 | 11.89                    | 13.72                  | 1.83   | 3.46   | 668303 | 5316240 | 155.2 |
| U0631L5 | 14.63                    | 16.76                  | 2.13   | 2.5    | 668300 | 5316241 | 155.2 |
| U0635L5 | 1.52                     | 3.81                   | 2.29   | 2.52   | 668305 | 5316220 | 155.2 |
| U0638L5 | 0                        | 3.05                   | 3.05   | 2.09   | 668304 | 5316212 | 153.2 |
| U0638L5 | 5.79                     | 12.5                   | 6.71   | 2.61   | 668301 | 5316214 | 146.6 |
| U0639L5 | 12.95                    | 13.72                  | 0.77   | 33.94  | 668319 | 5316206 | 155.3 |
| U0642L5 | 15.24                    | 18.44                  | 3.2    | 9.67   | 668319 | 5316197 | 155.3 |
| U0644L5 | 12.95                    | 16.15                  | 3.2    | 4.02   | 668314 | 5316191 | 155.3 |
| U0645L5 | 0.76                     | 1.52                   | 0.76   | 2.74   | 668295 | 5316191 | 155.5 |
| U0645L5 | 3.05                     | 4.11                   | 1.06   | 2.06   | 668293 | 5316192 | 155.5 |
| U0645L5 | 14.94                    | 20.12                  | 5.18   | 2.73   | 668280 | 5316198 | 155.5 |
| U0645L5 | 21.24                    | 22.56                  | 1.32   | 2.65   | 668276 | 5316199 | 155.5 |
| U0646L5 | 0                        | 0.91                   | 0.91   | 2.06   | 668298 | 5316190 | 155.4 |
| U0646L5 | 12.95                    | 13.72                  | 0.77   | 6.86   | 668310 | 5316183 | 155.4 |
| U0647L5 | 0                        | 3.81                   | 3.81   | 2.88   | 668291 | 5316185 | 155.5 |
| U0647L5 | 15.24                    | 16.46                  | 1.22   | 2.06   | 668279 | 5316191 | 155.5 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0648L5 | 0                        | 5.03                   | 5.03   | 2.69   | 668292 | 5316185 | 152.4 |
| U0652L5 | 15.85                    | 16.31                  | 0.46   | 7.54   | 668364 | 5316863 | 152.6 |
| U0654L5 | 2.13                     | 4.57                   | 2.44   | 6.36   | 668433 | 5316828 | 150.2 |
| U0654L5 | 5.18                     | 6.25                   | 1.07   | 14.74  | 668431 | 5316828 | 148.4 |
| U0654L5 | 53.34                    | 53.95                  | 0.61   | 9.26   | 668401 | 5316827 | 111.7 |
| U0655L5 | 0.76                     | 3.81                   | 3.05   | 2.05   | 668289 | 5316178 | 155.3 |
| U0657L5 | 0                        | 2.29                   | 2.29   | 2.17   | 668301 | 5316197 | 157.9 |
| U0659L5 | 0.3                      | 5.94                   | 5.64   | 3.92   | 668313 | 5316235 | 151.9 |
| U0659L5 | 8.23                     | 9.6                    | 1.37   | 5.79   | 668310 | 5316236 | 146.9 |
| U0661L5 | 0.76                     | 5.33                   | 4.57   | 2.19   | 668319 | 5316247 | 151.7 |
| U0661L5 | 6.71                     | 9.45                   | 2.74   | 5.94   | 668316 | 5316248 | 147.3 |
| U0661L5 | 17.07                    | 18.29                  | 1.22   | 5.49   | 668312 | 5316250 | 139   |
| U0664L5 | 4.27                     | 5.79                   | 1.52   | 2.06   | 668347 | 5316303 | 149.5 |
| U0664L5 | 7.32                     | 7.92                   | 0.6    | 2.06   | 668348 | 5316302 | 147.3 |
| U0664L5 | 11.43                    | 12.95                  | 1.52   | 2.06   | 668350 | 5316301 | 143.3 |
| U0664L5 | 17.37                    | 18.29                  | 0.92   | 3.09   | 668353 | 5316300 | 138.5 |
| U0664L5 | 25.45                    | 26.37                  | 0.92   | 2.4    | 668357 | 5316298 | 131.5 |
| U0665L5 | 2.59                     | 3.35                   | 0.76   | 2.06   | 668508 | 5317041 | 150.9 |
| U0666L5 | 13.72                    | 14.33                  | 0.61   | 7.54   | 668446 | 5316825 | 139.7 |
| U0666L5 | 25.91                    | 28.04                  | 2.13   | 3.28   | 668451 | 5316823 | 127.9 |
| U0667L5 | 16.76                    | 20.12                  | 3.36   | 2.15   | 668413 | 5316440 | 144.3 |
| U0667L5 | 21.03                    | 23.16                  | 2.13   | 2.63   | 668413 | 5316437 | 142.4 |
| U0667L5 | 23.93                    | 31.7                   | 7.77   | 5.41   | 668413 | 5316432 | 139.5 |
| U0667L5 | 36.27                    | 38.4                   | 2.13   | 3.89   | 668412 | 5316424 | 134.6 |
| U0667L5 | 42.98                    | 44.81                  | 1.83   | 2.15   | 668411 | 5316419 | 131.2 |
| U0667L5 | 47.24                    | 49.99                  | 2.75   | 2.4    | 668411 | 5316415 | 128.8 |
| U0667L5 | 51.82                    | 55.17                  | 3.35   | 2.07   | 668410 | 5316410 | 126.2 |
| U0667L5 | 55.93                    | 57.76                  | 1.83   | 10.64  | 668410 | 5316408 | 124.5 |
| U0667L5 | 63.25                    | 67.36                  | 4.11   | 12.26  | 668409 | 5316400 | 120.2 |
| U0667L5 | 69.49                    | 71.93                  | 2.44   | 5.85   | 668409 | 5316396 | 117.4 |
| U0668L5 | 5.49                     | 17.07                  | 11.58  | 5.22   | 668405 | 5316452 | 149   |
| U0668L5 | 17.83                    | 27.43                  | 9.6    | 6.34   | 668395 | 5316447 | 144.2 |
| U0668L5 | 32.31                    | 34.75                  | 2.44   | 4.37   | 668387 | 5316443 | 139.6 |
| U0669L5 | 9.3                      | 15.24                  | 5.94   | 59.14  | 668407 | 5316467 | 149   |
| U0669L5 | 16.15                    | 16.76                  | 0.61   | 3.09   | 668404 | 5316470 | 147.4 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0669L5 | 18.59                    | 21.34                  | 2.75   | 2.36   | 668402 | 5316472 | 146   |
| U0670L5 | 28.65                    | 29.87                  | 1.22   | 9.77   | 668419 | 5316484 | 140.2 |
| U0670L5 | 31.09                    | 34.44                  | 3.35   | 4.34   | 668420 | 5316487 | 138.5 |
| U0670L5 | 39.01                    | 41                     | 1.99   | 2.11   | 668421 | 5316493 | 135.1 |
| U0670L5 | 41.91                    | 43.59                  | 1.68   | 5.35   | 668421 | 5316495 | 133.8 |
| U0671L5 | 6.1                      | 8.23                   | 2.13   | 7.05   | 668415 | 5316458 | 146.6 |
| U0671L5 | 11.28                    | 12.34                  | 1.06   | 8.23   | 668415 | 5316458 | 142   |
| U0671L5 | 12.5                     | 13.41                  | 0.91   | 2.4    | 668415 | 5316458 | 140.8 |
| U0671L5 | 13.56                    | 14.33                  | 0.77   | 2.74   | 668415 | 5316458 | 139.9 |
| U0671L5 | 16.15                    | 18.59                  | 2.44   | 18.51  | 668415 | 5316458 | 136.4 |
| U0671L5 | 21.34                    | 22.1                   | 0.76   | 2.06   | 668415 | 5316458 | 132.1 |
| U0672L5 | 24.69                    | 28.96                  | 4.27   | 6.17   | 668429 | 5316437 | 133.7 |
| U0672L5 | 31.39                    | 33.38                  | 1.99   | 2.76   | 668429 | 5316433 | 129.4 |
| U0672L5 | 34.44                    | 36.12                  | 1.68   | 17.59  | 668428 | 5316432 | 127.2 |
| U0672L5 | 36.88                    | 39.93                  | 3.05   | 4.41   | 668428 | 5316430 | 124.8 |
| U0672L5 | 41                       | 51.97                  | 10.97  | 15.25  | 668427 | 5316424 | 118.6 |
| U0672L5 | 55.78                    | 56.54                  | 0.76   | 4.8    | 668427 | 5316418 | 111.2 |
| U0673L5 | 55.17                    | 58.22                  | 3.05   | 5.9    | 668451 | 5316425 | 109.4 |
| U0673L5 | 61.87                    | 65.07                  | 3.2    | 7.64   | 668453 | 5316422 | 104.1 |
| U0674L5 | 51.82                    | 57.61                  | 5.79   | 2.21   | 668457 | 5316448 | 106.2 |
| U0674L5 | 64.62                    | 66.75                  | 2.13   | 2.64   | 668463 | 5316447 | 96.7  |
| U0676L5 | 25.6                     | 30.78                  | 5.18   | 2.46   | 668432 | 5316473 | 135.4 |
| U0676L5 | 32.31                    | 35.97                  | 3.66   | 4.15   | 668432 | 5316477 | 130.9 |
| U0676L5 | 39.01                    | 39.62                  | 0.61   | 2.06   | 668432 | 5316481 | 127   |
| U0676L5 | 44.81                    | 46.63                  | 1.82   | 2.23   | 668433 | 5316485 | 122.2 |
| U0676L5 | 47.55                    | 48.16                  | 0.61   | 2.4    | 668433 | 5316486 | 120.6 |
| U0677L5 | 20.12                    | 20.42                  | 0.3    | 22.29  | 668431 | 5316455 | 133.3 |
| U0677L5 | 21.18                    | 22.56                  | 1.38   | 81.6   | 668431 | 5316455 | 131.7 |
| U0677L5 | 23.47                    | 26.21                  | 2.74   | 2.4    | 668431 | 5316455 | 128.8 |
| U0677L5 | 27.13                    | 30.78                  | 3.65   | 3.09   | 668431 | 5316455 | 124.6 |
| U0677L5 | 31.7                     | 34.44                  | 2.74   | 3.91   | 668431 | 5316455 | 120.5 |
| U0677L5 | 36.88                    | 37.8                   | 0.92   | 18.19  | 668431 | 5316455 | 116.3 |
| U0678L5 | 26.82                    | 34.44                  | 7.62   | 5.59   | 668430 | 5316443 | 125.8 |
| U0678L5 | 42.67                    | 47.09                  | 4.42   | 2.3    | 668429 | 5316437 | 112.6 |
| U0679L5 | 5.64                     | 7.47                   | 1.83   | 8.23   | 668434 | 5316829 | 147.6 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0683L5 | 11.58                    | 16.15                  | 4.57   | 2.26   | 668342 | 5316428 | 166.6 |
| U0683L5 | 18.29                    | 21.85                  | 3.56   | 5.15   | 668343 | 5316432 | 171.4 |
| U0683L5 | 24.23                    | 24.99                  | 0.76   | 2.74   | 668344 | 5316434 | 174.9 |
| U0683L5 | 37.49                    | 39.24                  | 1.75   | 2.63   | 668346 | 5316443 | 185.4 |
| U0683L5 | 40.39                    | 43.89                  | 3.5    | 3.5    | 668347 | 5316445 | 188.3 |
| U0684L5 | 9.91                     | 12.19                  | 2.28   | 22.74  | 668338 | 5316410 | 163.8 |
| U0684L5 | 14.48                    | 15.85                  | 1.37   | 2.63   | 668337 | 5316407 | 166.8 |
| U0684L5 | 18.9                     | 24.38                  | 5.48   | 2.17   | 668336 | 5316403 | 171.5 |
| U0684L5 | 38.4                     | 39.32                  | 0.92   | 2.4    | 668333 | 5316391 | 183.9 |
| U0688L5 | 13.72                    | 14.48                  | 0.76   | 2.06   | 668412 | 5316365 | 141.2 |
| U0688L5 | 17.68                    | 22.86                  | 5.18   | 4.45   | 668411 | 5316362 | 135.6 |
| U0688L5 | 23.16                    | 28.5                   | 5.34   | 2.79   | 668410 | 5316360 | 130.5 |
| U0688L5 | 29.87                    | 34.05                  | 4.18   | 2.8    | 668409 | 5316358 | 124.9 |
| U0688L5 | 34.44                    | 36.73                  | 2.29   | 3.23   | 668409 | 5316357 | 121.6 |
| U0688L5 | 38.56                    | 39.32                  | 0.76   | 2.06   | 668408 | 5316355 | 118.5 |
| U0689L5 | 9.75                     | 35.66                  | 25.91  | 4.76   | 668414 | 5316371 | 131.4 |
| U0689L5 | 36.58                    | 42.52                  | 5.94   | 5.33   | 668414 | 5316371 | 114.6 |
| U0690L5 | 11.89                    | 12.8                   | 0.91   | 2.4    | 668415 | 5316377 | 143.2 |
| U0690L5 | 26.06                    | 27.74                  | 1.68   | 2.02   | 668415 | 5316384 | 130.3 |
| U0690L5 | 28.65                    | 42.82                  | 14.17  | 8.64   | 668416 | 5316388 | 122.5 |
| U0690L5 | 46.79                    | 49.68                  | 2.89   | 2.75   | 668416 | 5316394 | 111.5 |
| U0691L5 | 4.75                     | 5.49                   | 0.74   | 2.06   | 668391 | 5316371 | 150.1 |
| U0691L5 | 10.06                    | 16.46                  | 6.4    | 2.97   | 668390 | 5316366 | 143.8 |
| U0691L5 | 26.21                    | 36.58                  | 10.37  | 6.24   | 668388 | 5316354 | 130   |
| U0692L5 | 10.36                    | 19.05                  | 8.69   | 8.31   | 668384 | 5316377 | 141.3 |
| U0693L5 | 10.52                    | 20.12                  | 9.6    | 2.04   | 668394 | 5316386 | 142.3 |
| U0693L5 | 22.56                    | 23.47                  | 0.91   | 4.11   | 668394 | 5316391 | 136.4 |
| U0693L5 | 26.21                    | 31.24                  | 5.03   | 3.4    | 668395 | 5316394 | 132   |
| U0693L5 | 40.84                    | 42.37                  | 1.53   | 2.4    | 668396 | 5316402 | 122.1 |
| U0694L5 | 15.24                    | 15.85                  | 0.61   | 2.74   | 668407 | 5316372 | 140.2 |
| U0694L5 | 21.18                    | 25.6                   | 4.42   | 3.26   | 668404 | 5316373 | 133.3 |
| U0695L5 | 53.95                    | 54.25                  | 0.3    | 13.03  | 668466 | 5316426 | 106   |
| U0696L5 | 53.64                    | 54.86                  | 1.22   | 3.09   | 668460 | 5316400 | 99.6  |
| U0697L5 | 56.69                    | 57.61                  | 0.92   | 2.4    | 668215 | 5316113 | 155.8 |
| U0701L5 | 6.1                      | 7.32                   | 1.22   | 6.86   | 668398 | 5316419 | 148.5 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0701L5 | 14.78                    | 21.49                  | 6.71   | 8.3    | 668399 | 5316427 | 139.9 |
| U0701L5 | 23.77                    | 26.06                  | 2.29   | 5.35   | 668400 | 5316431 | 134.8 |
| U0701L5 | 31.39                    | 33.38                  | 1.99   | 2.65   | 668401 | 5316436 | 129.2 |
| U0702L5 | 3.35                     | 5.03                   | 1.68   | 2.65   | 668396 | 5316414 | 149.4 |
| U0702L5 | 7.01                     | 7.62                   | 0.61   | 3.09   | 668396 | 5316414 | 146.3 |
| U0702L5 | 15.85                    | 19.81                  | 3.96   | 6.44   | 668396 | 5316414 | 135.8 |
| U0702L5 | 29.87                    | 30.94                  | 1.07   | 2.4    | 668396 | 5316414 | 123.2 |
| U0703L5 | 1.22                     | 4.57                   | 3.35   | 12.42  | 668396 | 5316412 | 151.1 |
| U0703L5 | 9.45                     | 10.06                  | 0.61   | 2.06   | 668395 | 5316408 | 145.2 |
| U0703L5 | 12.5                     | 13.72                  | 1.22   | 2.06   | 668395 | 5316407 | 142.2 |
| U0703L5 | 18.59                    | 28.65                  | 10.06  | 4.55   | 668394 | 5316401 | 133.1 |
| U0705L5 | 13.72                    | 14.84                  | 1.12   | 2.19   | 668422 | 5316408 | 139.4 |
| U0705L5 | 17.83                    | 30.18                  | 12.35  | 3.48   | 668422 | 5316408 | 129.7 |
| U0705L5 | 32.61                    | 33.22                  | 0.61   | 2.06   | 668422 | 5316408 | 120.8 |
| U0705L5 | 38.71                    | 40.54                  | 1.83   | 6.71   | 668422 | 5316408 | 114.1 |
| U0705L5 | 41.45                    | 43.13                  | 1.68   | 2      | 668422 | 5316408 | 111.4 |
| U0705L5 | 44.04                    | 46.94                  | 2.9    | 2.22   | 668422 | 5316408 | 108.2 |
| U0706L5 | 13.11                    | 13.72                  | 0.61   | 9.94   | 668420 | 5316400 | 142.4 |
| U0706L5 | 20.12                    | 34.14                  | 14.02  | 5      | 668418 | 5316393 | 130.9 |
| U0706L5 | 35.36                    | 44.81                  | 9.45   | 7.96   | 668417 | 5316386 | 120.1 |
| U0712L5 | 31.85                    | 32.31                  | 0.46   | 2.74   | 668280 | 5316132 | 122.4 |
| U0713L5 | 32.92                    | 34.14                  | 1.22   | 2.06   | 668278 | 5316123 | 121   |
| U0714L5 | 54.25                    | 55.17                  | 0.92   | 2.06   | 668240 | 5316135 | 115.8 |
| U0715L5 | 31.7                     | 38.4                   | 6.7    | 3.13   | 668445 | 5316421 | 122.8 |
| U0715L5 | 39.32                    | 43.89                  | 4.57   | 2.01   | 668445 | 5316424 | 117   |
| U0715L5 | 44.2                     | 45.72                  | 1.52   | 14.3   | 668446 | 5316426 | 114   |
| U0715L5 | 47.24                    | 51.21                  | 3.97   | 2.86   | 668446 | 5316428 | 110.2 |
| U0715L5 | 52.12                    | 53.64                  | 1.52   | 4.86   | 668447 | 5316429 | 107   |
| U0716L5 | 26.21                    | 27.13                  | 0.92   | 3.09   | 668438 | 5316391 | 130.2 |
| U0716L5 | 39.32                    | 46.63                  | 7.31   | 3.99   | 668436 | 5316384 | 115.8 |
| U0716L5 | 49.99                    | 51.82                  | 1.83   | 2.17   | 668435 | 5316380 | 108.8 |
| U0717L5 | 27.13                    | 27.89                  | 0.76   | 7.54   | 668441 | 5316404 | 126.2 |
| U0717L5 | 40.23                    | 41.15                  | 0.92   | 3.09   | 668441 | 5316404 | 113   |
| U0717L5 | 41.61                    | 43.74                  | 2.13   | 2.57   | 668441 | 5316404 | 111   |
| U0717L5 | 49.68                    | 52.58                  | 2.9    | 3.02   | 668441 | 5316404 | 102.6 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0718L5 | 66.75                    | 67.21                  | 0.46   | 3.73   | 668482 | 5316413 | 90.9  |
| U0718L5 | 73.3                     | 73.61                  | 0.31   | 8.91   | 668484 | 5316414 | 84.8  |
| U0719L5 | 65.38                    | 67.82                  | 2.44   | 20.34  | 668472 | 5316380 | 91.2  |
| U0719L5 | 68.28                    | 69.49                  | 1.21   | 20.37  | 668472 | 5316379 | 89.1  |
| U0720L5 | 26.82                    | 31.09                  | 4.27   | 5.81   | 668421 | 5316362 | 127.1 |
| U0720L5 | 32.31                    | 38.25                  | 5.94   | 6.07   | 668422 | 5316360 | 121.2 |
| U0720L5 | 42.06                    | 43.13                  | 1.07   | 3.77   | 668424 | 5316358 | 114.3 |
| U0720L5 | 48.92                    | 49.68                  | 0.76   | 4.46   | 668425 | 5316356 | 108.1 |
| U0721L5 | 21.34                    | 22.1                   | 0.76   | 2.06   | 668411 | 5316355 | 139   |
| U0721L5 | 26.97                    | 41.45                  | 14.48  | 4.35   | 668410 | 5316346 | 130.2 |
| U0721L5 | 42.06                    | 42.98                  | 0.92   | 3.09   | 668409 | 5316340 | 124.3 |
| U0721L5 | 45.42                    | 51.82                  | 6.4    | 2.24   | 668408 | 5316336 | 120   |
| U0721L5 | 54.86                    | 56.39                  | 1.53   | 2.06   | 668407 | 5316331 | 115.1 |
| U0722L5 | 15.24                    | 19.66                  | 4.42   | 2.45   | 668401 | 5316358 | 143   |
| U0722L5 | 22.71                    | 23.77                  | 1.06   | 3.09   | 668399 | 5316354 | 139.3 |
| U0722L5 | 37.64                    | 43.28                  | 5.64   | 5      | 668396 | 5316341 | 128.2 |
| U0722L5 | 44.04                    | 52.43                  | 8.39   | 4.81   | 668394 | 5316335 | 123.2 |
| U0727L5 | 3.05                     | 3.96                   | 0.91   | 14.06  | 668385 | 5316514 | 167.5 |
| U0727L5 | 4.57                     | 18.9                   | 14.33  | 20.82  | 668382 | 5316522 | 167.5 |
| U0727L7 | 58.67                    | 59.44                  | 0.77   | 8.23   | 668436 | 5316138 | 42.3  |
| U0728L5 | 1.52                     | 9.45                   | 7.93   | 8.72   | 668385 | 5316515 | 162.7 |
| U0728L5 | 15.85                    | 16.31                  | 0.46   | 2.4    | 668382 | 5316522 | 155.2 |
| U0728L5 | 23.77                    | 26.52                  | 2.75   | 8.78   | 668380 | 5316528 | 148.8 |
| U0729L5 | 1.83                     | 6.1                    | 4.27   | 3.13   | 668382 | 5316510 | 167.5 |
| U0729L5 | 10.36                    | 11.13                  | 0.77   | 19.54  | 668375 | 5316510 | 167.5 |
| U0729L5 | 12.04                    | 15.24                  | 3.2    | 21.66  | 668372 | 5316510 | 167.5 |
| U0729L5 | 18.14                    | 20.42                  | 2.28   | 2.09   | 668367 | 5316510 | 167.5 |
| U0729L5 | 25.15                    | 29.57                  | 4.42   | 7.83   | 668359 | 5316510 | 167.5 |
| U0729L5 | 33.53                    | 40.54                  | 7.01   | 3.19   | 668349 | 5316510 | 167.5 |
| U0730L5 | 0                        | 3.35                   | 3.35   | 3.37   | 668385 | 5316510 | 165.3 |
| U0730L5 | 4.27                     | 7.92                   | 3.65   | 2.32   | 668382 | 5316510 | 162.2 |
| U0731L5 | 8.53                     | 9.45                   | 0.92   | 2.06   | 668323 | 5316503 | 203.2 |
| U0733L5 | 12.19                    | 15.54                  | 3.35   | 3.98   | 668339 | 5316496 | 200.1 |
| U0734L5 | 10.67                    | 14.63                  | 3.96   | 2.36   | 668342 | 5316494 | 196.9 |
| U0734L5 | 14.78                    | 15.39                  | 0.61   | 5.83   | 668343 | 5316493 | 199   |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0735L5 | 4.42                     | 14.33                  | 9.91   | 4.42   | 668346 | 5316491 | 190.2 |
| U0735L5 | 14.94                    | 15.54                  | 0.6    | 4.8    | 668349 | 5316490 | 195.3 |
| U0736L5 | 2.9                      | 3.96                   | 1.06   | 2.06   | 668349 | 5316490 | 181.6 |
| U0736L5 | 7.16                     | 16.31                  | 9.15   | 5.11   | 668353 | 5316489 | 188.8 |
| U0739L5 | 1.83                     | 4.11                   | 2.28   | 5.01   | 668368 | 5316480 | 168   |
| U0739L5 | 19.51                    | 23.29                  | 3.78   | 2.63   | 668377 | 5316479 | 183.9 |
| U0742L5 | 13.56                    | 14.33                  | 0.77   | 2.06   | 668306 | 5316445 | 205.9 |
| U0742L5 | 21.64                    | 21.95                  | 0.31   | 60.34  | 668310 | 5316445 | 212.7 |
| U0743L5 | 9.75                     | 10.67                  | 0.92   | 2.06   | 668310 | 5316443 | 198.7 |
| U0743L5 | 16.15                    | 16.61                  | 0.46   | 4.46   | 668313 | 5316442 | 203.9 |
| U0746L5 | 16.15                    | 18.29                  | 2.14   | 6.38   | 668330 | 5316433 | 193.5 |
| U0748L5 | 14.17                    | 17.53                  | 3.36   | 5.12   | 668342 | 5316425 | 184.4 |
| U0749L5 | 1.22                     | 2.13                   | 0.91   | 21.94  | 668338 | 5316423 | 169.6 |
| U0751L5 | 0.3                      | 1.22                   | 0.92   | 7.54   | 668351 | 5316419 | 161.1 |
| U0751L5 | 1.52                     | 1.98                   | 0.46   | 4.11   | 668352 | 5316419 | 161.9 |
| U0751L5 | 13.41                    | 17.68                  | 4.27   | 2.92   | 668359 | 5316418 | 173.9 |
| U0763L6 | 0                        | 6.1                    | 6.1    | 8.45   | 668432 | 5316674 | 126.7 |
| U0763L6 | 7.62                     | 7.92                   | 0.3    | 6.51   | 668433 | 5316672 | 130.8 |
| U0763L6 | 12.19                    | 12.8                   | 0.61   | 2.06   | 668434 | 5316670 | 134.9 |
| U0763L6 | 14.02                    | 14.63                  | 0.61   | 12.34  | 668435 | 5316669 | 136.5 |
| U0764L6 | 0.61                     | 5.49                   | 4.88   | 8.4    | 668436 | 5316670 | 124   |
| U0766L5 | 0                        | 4.88                   | 4.88   | 3.6    | 668392 | 5316468 | 158.5 |
| U0766L5 | 7.32                     | 10.06                  | 2.74   | 2.4    | 668394 | 5316467 | 164.3 |
| U0767L5 | 0.61                     | 3.35                   | 2.74   | 2.34   | 668397 | 5316460 | 152   |
| U0768L5 | 10.52                    | 11.13                  | 0.61   | 2.4    | 668418 | 5316458 | 143.7 |
| U0768L5 | 15.7                     | 20.73                  | 5.03   | 10.28  | 668415 | 5316459 | 137   |
| U0768L5 | 26.52                    | 29.26                  | 2.74   | 3.44   | 668412 | 5316460 | 128.1 |
| U0772L6 | 15.24                    | 16.31                  | 1.07   | 2.4    | 668407 | 5316344 | 116.9 |
| U0772L6 | 17.83                    | 27.43                  | 9.6    | 12.6   | 668414 | 5316341 | 116.9 |
| U0772L6 | 28.35                    | 33.53                  | 5.18   | 2.24   | 668421 | 5316338 | 116.9 |
| U0774L6 | 11.89                    | 15.24                  | 3.35   | 5.55   | 668408 | 5316352 | 116.9 |
| U0774L6 | 16.76                    | 19.51                  | 2.75   | 2.85   | 668412 | 5316350 | 116.9 |
| U0774L6 | 20.12                    | 36.73                  | 16.61  | 3.03   | 668421 | 5316345 | 116.9 |
| U0776L6 | 4.57                     | 5.49                   | 0.92   | 2.4    | 668404 | 5316363 | 116.8 |
| U0776L6 | 6.1                      | 7.01                   | 0.91   | 2.06   | 668405 | 5316362 | 116.8 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0776L6 | 13.11                    | 14.02                  | 0.91   | 2.74   | 668411 | 5316359 | 116.8 |
| U0776L6 | 18.14                    | 27.43                  | 9.29   | 5.91   | 668419 | 5316355 | 116.8 |
| U0776L6 | 28.04                    | 29.87                  | 1.83   | 2.17   | 668425 | 5316352 | 116.8 |
| U0776L6 | 33.53                    | 34.75                  | 1.22   | 2.23   | 668429 | 5316350 | 116.8 |
| U0776L6 | 36.42                    | 36.88                  | 0.46   | 2.06   | 668432 | 5316348 | 116.8 |
| U0776L6 | 42.06                    | 42.98                  | 0.92   | 2.06   | 668437 | 5316346 | 116.8 |
| U0777L6 | 0.61                     | 4.88                   | 4.27   | 4.09   | 668422 | 5316422 | 112.7 |
| U0784L6 | 7.32                     | 13.72                  | 6.4    | 11.45  | 668420 | 5316389 | 116.3 |
| U0784L6 | 16.46                    | 18.29                  | 1.83   | 3.24   | 668426 | 5316386 | 116.3 |
| U0784L6 | 18.9                     | 20.27                  | 1.37   | 5.86   | 668428 | 5316385 | 116.3 |
| U0784L6 | 23.38                    | 26.82                  | 3.44   | 2.87   | 668433 | 5316383 | 116.3 |
| U0784L6 | 27.74                    | 29.26                  | 1.52   | 2.4    | 668436 | 5316381 | 116.3 |
| U0793L6 | 0                        | 2.44                   | 2.44   | 13.2   | 668419 | 5316423 | 115.6 |
| U0793L6 | 4.11                     | 4.72                   | 0.61   | 5.83   | 668416 | 5316424 | 114.6 |
| U0798L6 | 1.52                     | 3.35                   | 1.83   | 2.22   | 668432 | 5316441 | 116.1 |
| U0798L6 | 6.71                     | 7.62                   | 0.91   | 6.51   | 668436 | 5316439 | 116.1 |
| U0798L6 | 11.28                    | 11.89                  | 0.61   | 9.26   | 668440 | 5316437 | 116.1 |
| U0798L6 | 13.11                    | 15.24                  | 2.13   | 3.18   | 668443 | 5316435 | 116.1 |
| U0810L6 | 5.49                     | 6.4                    | 0.91   | 15.43  | 668439 | 5316489 | 115.9 |
| U0810L6 | 10.97                    | 12.5                   | 1.53   | 3.15   | 668433 | 5316491 | 115.9 |
| U0812L6 | 1.83                     | 3.66                   | 1.83   | 3.1    | 668449 | 5316500 | 116   |
| U0812L6 | 4.27                     | 7.01                   | 2.74   | 10.22  | 668446 | 5316501 | 116   |
| U0812L6 | 9.45                     | 10.06                  | 0.61   | 2.74   | 668442 | 5316503 | 116   |
| U0812L6 | 10.97                    | 11.58                  | 0.61   | 5.83   | 668441 | 5316503 | 116   |
| U0812L6 | 14.63                    | 19.2                   | 4.57   | 3.01   | 668435 | 5316506 | 116   |
| U0825L6 | 0                        | 1.22                   | 1.22   | 12.81  | 668417 | 5316493 | 136.2 |
| U0846L6 | 3.6                      | 4.08                   | 0.48   | 3.09   | 668402 | 5316429 | 130.6 |
| U0846L6 | 5.33                     | 9.14                   | 3.81   | 4.31   | 668405 | 5316427 | 130.6 |
| U0846L6 | 10.67                    | 15.24                  | 4.57   | 5.81   | 668410 | 5316424 | 130.6 |
| U0846L6 | 16.76                    | 17.53                  | 0.77   | 2.74   | 668413 | 5316422 | 130.6 |
| U0846L6 | 21.34                    | 24.84                  | 3.5    | 2.06   | 668418 | 5316418 | 130.6 |
| U0846L6 | 28.96                    | 30.48                  | 1.52   | 2.23   | 668424 | 5316415 | 130.6 |
| U0847L6 | 1.52                     | 3.26                   | 1.74   | 3.31   | 668411 | 5316425 | 123.6 |
| U0847L6 | 3.57                     | 6.1                    | 2.53   | 2.18   | 668413 | 5316423 | 123.6 |
| U0847L6 | 7.62                     | 8.72                   | 1.1    | 4.01   | 668416 | 5316422 | 123.6 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0847L6 | 12.44                    | 15.09                  | 2.65   | 4.08   | 668421 | 5316419 | 123.6 |
| U0847L6 | 19.81                    | 22.86                  | 3.05   | 13.16  | 668427 | 5316415 | 123.6 |
| U0847L6 | 24.38                    | 24.99                  | 0.61   | 2.74   | 668430 | 5316413 | 123.6 |
| U0847L6 | 25.91                    | 26.67                  | 0.76   | 2.4    | 668431 | 5316412 | 123.6 |
| U0848L6 | 0                        | 0.76                   | 0.76   | 7.89   | 668431 | 5316484 | 124.6 |
| U0851L6 | 0                        | 2.74                   | 2.74   | 4.88   | 668416 | 5316493 | 131.8 |
| U0852L6 | 0                        | 1.83                   | 1.83   | 4.51   | 668383 | 5316441 | 146.9 |
| U0852L6 | 5.33                     | 10.06                  | 4.73   | 4.11   | 668389 | 5316438 | 146.9 |
| U0852L6 | 11.43                    | 15.24                  | 3.81   | 6.31   | 668394 | 5316436 | 146.9 |
| U0852L6 | 20.57                    | 22.1                   | 1.53   | 4.78   | 668402 | 5316432 | 146.9 |
| U0868L6 | 0                        | 6.1                    | 6.1    | 2.92   | 668355 | 5316250 | 115.3 |
| U0868L6 | 6.71                     | 7.35                   | 0.64   | 5.83   | 668358 | 5316248 | 113.9 |
| U0868L6 | 7.86                     | 12.92                  | 5.06   | 6.14   | 668361 | 5316247 | 112.8 |
| U0868L6 | 15.24                    | 18.29                  | 3.05   | 5.25   | 668366 | 5316245 | 110.5 |
| U0868L6 | 19.81                    | 32                     | 12.19  | 7.58   | 668374 | 5316241 | 107.3 |
| U0868L6 | 33.07                    | 33.53                  | 0.46   | 3.6    | 668381 | 5316238 | 104.7 |
| U0868L6 | 41.15                    | 41.76                  | 0.61   | 2.57   | 668388 | 5316235 | 101.9 |
| U0869L6 | 0                        | 6.68                   | 6.68   | 6.71   | 668355 | 5316250 | 117.2 |
| U0869L6 | 8.5                      | 9.39                   | 0.89   | 3.09   | 668360 | 5316247 | 117.5 |
| U0870L6 | 0                        | 6.83                   | 6.83   | 2.37   | 668351 | 5316252 | 122.1 |
| U0871L6 | 9.91                     | 10.67                  | 0.76   | 2.06   | 668343 | 5316206 | 113.4 |
| U0871L6 | 26.03                    | 28.32                  | 2.29   | 5.13   | 668357 | 5316199 | 107.6 |
| U0871L6 | 29.75                    | 30.11                  | 0.36   | 2.74   | 668359 | 5316198 | 106.7 |
| U0871L6 | 32.16                    | 34.44                  | 2.28   | 2.11   | 668362 | 5316196 | 105.5 |
| U0882L6 | 0                        | 10.06                  | 10.06  | 4.49   | 668375 | 5316292 | 121.7 |
| U0883L6 | 0                        | 6.49                   | 6.49   | 8.26   | 668371 | 5316293 | 121.6 |
| U0883L6 | 7.25                     | 9.75                   | 2.5    | 2.17   | 668371 | 5316293 | 126.9 |
| U0883L6 | 11.89                    | 12.71                  | 0.82   | 3.09   | 668371 | 5316293 | 130.7 |
| U0883L6 | 14.02                    | 15.54                  | 1.52   | 3.31   | 668371 | 5316293 | 133.2 |
| U0893L6 | 7.62                     | 15.09                  | 7.47   | 7.84   | 668381 | 5316339 | 128.8 |
| U0893L6 | 16.95                    | 18.2                   | 1.25   | 2.11   | 668379 | 5316340 | 134.6 |
| U0898L6 | 2.96                     | 5.43                   | 2.47   | 4.12   | 668384 | 5316322 | 121.2 |
| U0898L6 | 5.73                     | 9.85                   | 4.12   | 6.36   | 668386 | 5316321 | 123.9 |
| U0904L6 | 0                        | 1.98                   | 1.98   | 4.46   | 668376 | 5316308 | 116.7 |
| U0904L6 | 6.52                     | 10.15                  | 3.63   | 6.78   | 668382 | 5316304 | 116.4 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0904L6 | 14.87                    | 15.33                  | 0.46   | 2.06   | 668388 | 5316301 | 116.2 |
| U0904L6 | 20.27                    | 21.34                  | 1.07   | 2.06   | 668394 | 5316299 | 116   |
| U0904L6 | 22.01                    | 23.13                  | 1.12   | 5.39   | 668395 | 5316298 | 115.9 |
| U0905L6 | 0                        | 0.76                   | 0.76   | 9.26   | 668375 | 5316309 | 116.1 |
| U0905L6 | 1.52                     | 2.44                   | 0.92   | 4.11   | 668377 | 5316308 | 115.5 |
| U0906L6 | 5.49                     | 10.82                  | 5.33   | 2.89   | 668380 | 5316298 | 116.7 |
| U0906L6 | 12.5                     | 22.56                  | 10.06  | 2.92   | 668388 | 5316294 | 116.5 |
| U0907L6 | 24.08                    | 28.35                  | 4.27   | 2.33   | 668396 | 5316291 | 110.8 |
| U0916L6 | 0                        | 3.78                   | 3.78   | 4.35   | 668364 | 5316280 | 119.3 |
| U0916L6 | 4.3                      | 7.32                   | 3.02   | 2.41   | 668367 | 5316278 | 122.1 |
| U0920L6 | 4.18                     | 5.61                   | 1.43   | 2.64   | 668363 | 5316271 | 121.5 |
| U0922L6 | 10.97                    | 11.58                  | 0.61   | 6.86   | 668368 | 5316261 | 117   |
| U0925L6 | 0                        | 6.07                   | 6.07   | 2.33   | 668356 | 5316267 | 121.5 |
| U0925L6 | 12.5                     | 14.63                  | 2.13   | 2.07   | 668356 | 5316267 | 132.1 |
| U0926L6 | 0                        | 4.42                   | 4.42   | 2.67   | 668357 | 5316258 | 117   |
| U0926L6 | 5.18                     | 6.04                   | 0.86   | 2.06   | 668360 | 5316257 | 117   |
| U0927L6 | 0                        | 8.96                   | 8.96   | 4.43   | 668359 | 5316258 | 115   |
| U0927L6 | 9.63                     | 10.3                   | 0.67   | 2.06   | 668364 | 5316257 | 113.1 |
| U0927L6 | 50.29                    | 51.51                  | 1.22   | 2.13   | 668399 | 5316242 | 98.8  |
| U0946L6 | 6.1                      | 16.18                  | 10.08  | 4.33   | 668348 | 5316212 | 117.5 |
| U0966L6 | 8.53                     | 9.45                   | 0.92   | 2.23   | 668328 | 5316170 | 117.6 |
| U0966L6 | 10.67                    | 11.37                  | 0.7    | 2.57   | 668330 | 5316170 | 117.6 |
| U0966L6 | 16.7                     | 17.98                  | 1.28   | 2.11   | 668336 | 5316167 | 117.7 |
| U0970L6 | 26.18                    | 26.55                  | 0.37   | 2.57   | 668338 | 5316148 | 117.5 |
| U0971L6 | 0                        | 1.34                   | 1.34   | 24.17  | 668315 | 5316161 | 117.1 |
| U0971L6 | 35.42                    | 42.34                  | 6.92   | 4.11   | 668347 | 5316145 | 104   |
| U0972L6 | 5.12                     | 6.43                   | 1.31   | 2.25   | 668317 | 5316159 | 123   |
| U0979L6 | 8.02                     | 11.61                  | 3.59   | 4.75   | 668307 | 5316147 | 119.1 |
| U0984L6 | 3.54                     | 6.1                    | 2.56   | 2.12   | 668394 | 5316351 | 122.5 |
| U0984L6 | 7.32                     | 9.51                   | 2.19   | 2.2    | 668396 | 5316350 | 125.6 |
| U0984L6 | 9.75                     | 16.15                  | 6.4    | 6.94   | 668398 | 5316349 | 129.5 |
| U0984L6 | 18.9                     | 19.81                  | 0.91   | 2.06   | 668401 | 5316348 | 135.1 |
| U0984L6 | 20.42                    | 21.34                  | 0.92   | 2.57   | 668402 | 5316348 | 136.4 |
| U0986L6 | 7.32                     | 17.59                  | 10.27  | 6.14   | 668387 | 5316354 | 129.9 |
| U0986L6 | 18.44                    | 21.95                  | 3.51   | 6.07   | 668384 | 5316355 | 137.2 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | X      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U0991L6 | 0                        | 2.44                   | 2.44   | 7.12   | 668413 | 5316408 | 114.4 |
| U0991L6 | 4.57                     | 5.12                   | 0.55   | 2.06   | 668412 | 5316409 | 111.3 |
| U0992L6 | 0.61                     | 1.37                   | 0.76   | 3.43   | 668428 | 5316434 | 116.4 |
| U0992L6 | 2.13                     | 3.66                   | 1.53   | 8.04   | 668430 | 5316433 | 116.3 |
| U0992L6 | 7.16                     | 14.33                  | 7.17   | 2.74   | 668437 | 5316430 | 116.1 |
| U0992L6 | 15.54                    | 17.62                  | 2.08   | 2.73   | 668442 | 5316428 | 116   |
| U0992L6 | 18.29                    | 20.42                  | 2.13   | 2.65   | 668445 | 5316426 | 115.9 |
| U0995L6 | 5.91                     | 20.42                  | 14.51  | 8.93   | 668420 | 5316439 | 129.6 |
| U0996L6 | 4.11                     | 4.85                   | 0.74   | 3.26   | 668437 | 5316446 | 116.4 |
| U0996L6 | 12.8                     | 13.69                  | 0.89   | 4.39   | 668445 | 5316443 | 116.4 |
| U0996L6 | 15.7                     | 16.34                  | 0.64   | 3.43   | 668448 | 5316442 | 116.4 |
| U0997L6 | 4.97                     | 6.4                    | 1.43   | 4.28   | 668436 | 5316449 | 122.9 |
| U0998L6 | 2.44                     | 5.39                   | 2.95   | 2.2    | 668426 | 5316451 | 116.5 |
| U1027L2 | 17.68                    | 29.57                  | 11.89  | 6.09   | 668243 | 5316886 | 287.4 |
| U1027L2 | 30.48                    | 31.85                  | 1.37   | 2.81   | 668242 | 5316881 | 293.4 |
| U1043L6 | 0                        | 6.71                   | 6.71   | 2.67   | 668320 | 5316166 | 121   |
| U1108L3 | 0                        | 2.44                   | 2.44   | 2.03   | 668286 | 5316779 | 231.9 |
| U1113L3 | 23.77                    | 33.95                  | 10.18  | 2.35   | 668325 | 5316917 | 221.7 |
| U1113L3 | 34.9                     | 36.42                  | 1.52   | 2.61   | 668331 | 5316917 | 220   |
| U1117L3 | 16.46                    | 32.49                  | 16.03  | 2.86   | 668321 | 5317039 | 254.8 |
| U1220L6 | 2.44                     | 12.04                  | 9.6    | 4.83   | 668448 | 5316509 | 109.8 |
| U1220L6 | 17.68                    | 19.35                  | 1.67   | 2.33   | 668441 | 5316512 | 101.8 |
| U1226L6 | 0.91                     | 1.83                   | 0.92   | 2.13   | 668454 | 5316524 | 118.7 |
| U1258L5 | 0                        | 3.35                   | 3.35   | 6.62   | 668323 | 5316256 | 153.2 |
| U1258L5 | 18.44                    | 20.57                  | 2.13   | 2.43   | 668311 | 5316261 | 140.6 |
| U1265L5 | 6.71                     | 15.85                  | 9.14   | 2.21   | 668330 | 5316269 | 142.9 |
| U1265L5 | 19.35                    | 23.77                  | 4.42   | 2.42   | 668330 | 5316269 | 132.6 |
| U1335L5 | 0                        | 8.38                   | 8.38   | 2.39   | 668404 | 5316478 | 149.3 |
| U1335L5 | 10.97                    | 14.02                  | 3.05   | 2.29   | 668404 | 5316478 | 141   |
| U1362L5 | 58.52                    | 60.05                  | 1.53   | 4.59   | 668297 | 5316057 | 95.4  |
| U1362L5 | 60.35                    | 61.63                  | 1.28   | 4.59   | 668297 | 5316057 | 93.7  |
| U1403L7 | 10.06                    | 14.63                  | 4.57   | 2.18   | 668408 | 5316304 | 107.7 |
| U1403L7 | 16.15                    | 17.68                  | 1.53   | 2.4    | 668406 | 5316304 | 112.1 |
| U1404L7 | 8.53                     | 25.6                   | 17.07  | 4.59   | 668406 | 5316312 | 113.9 |
| U1434L7 | 0                        | 6.4                    | 6.4    | 5.62   | 668437 | 5316415 | 116.6 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U1434L7 | 7.92                     | 22.25                  | 14.33  | 2.92   | 668445 | 5316412 | 108.2 |
| U1434L7 | 31.55                    | 37.03                  | 5.48   | 2.14   | 668457 | 5316406 | 94.7  |
| U1443L7 | 2.44                     | 8.84                   | 6.4    | 2.18   | 668453 | 5316474 | 111.4 |
| U1443L7 | 9.75                     | 10.76                  | 1.01   | 2.13   | 668453 | 5316474 | 106.7 |
| U1502L5 | 56.6                     | 60.53                  | 3.93   | 2.22   | 668217 | 5316112 | 154.9 |
| U1507L5 | 40.84                    | 41.76                  | 0.92   | 2.33   | 668305 | 5316074 | 118.2 |
| U1507L5 | 61.14                    | 62.48                  | 1.34   | 2.19   | 668309 | 5316082 | 99.6  |
| U1508L5 | 42.98                    | 51.51                  | 8.53   | 3.09   | 668311 | 5316088 | 121.2 |
| U1508L5 | 62.42                    | 85.07                  | 22.65  | 3.72   | 668319 | 5316104 | 102.2 |
| U1508L5 | 90.22                    | 94.18                  | 3.96   | 3.92   | 668324 | 5316116 | 88.9  |
| U1509L5 | 21.95                    | 23.16                  | 1.21   | 3.36   | 668308 | 5316053 | 135.1 |
| U1509L5 | 34.29                    | 35.36                  | 1.07   | 2.13   | 668312 | 5316051 | 123.9 |
| U1509L5 | 55.47                    | 66.42                  | 10.95  | 2.23   | 668322 | 5316047 | 99.9  |
| U1509L5 | 69.8                     | 73.91                  | 4.11   | 7.2    | 668326 | 5316045 | 89.9  |
| U1509L5 | 86.87                    | 91.44                  | 4.57   | 2.34   | 668332 | 5316042 | 74    |
| U1509L5 | 93.57                    | 104.09                 | 10.52  | 2.54   | 668335 | 5316041 | 65.2  |
| U1509L5 | 125.67                   | 127.01                 | 1.34   | 3.22   | 668346 | 5316036 | 40.1  |
| U1610L4 | 0                        | 2.29                   | 2.29   | 2.03   | 668361 | 5316782 | 192.5 |
| U1650L5 | 29.41                    | 30.33                  | 0.92   | 2.54   | 668213 | 5316079 | 155.4 |
| U1650L5 | 34.9                     | 35.81                  | 0.91   | 4.25   | 668208 | 5316081 | 155.1 |
| U1650L5 | 39.62                    | 40.39                  | 0.77   | 2.08   | 668204 | 5316083 | 154.9 |
| U1650L5 | 41.76                    | 44.35                  | 2.59   | 3.06   | 668201 | 5316085 | 154.7 |
| U1650L5 | 47.4                     | 48.77                  | 1.37   | 2.67   | 668196 | 5316087 | 154.3 |
| U1650L5 | 66.14                    | 67.06                  | 0.92   | 2.33   | 668179 | 5316094 | 152.8 |
| U1650L5 | 71.63                    | 72.24                  | 0.61   | 2.61   | 668174 | 5316096 | 152.3 |
| U1650L5 | 79.25                    | 97.99                  | 18.74  | 5.65   | 668159 | 5316103 | 150.5 |
| U1651L5 | 10.52                    | 12.95                  | 2.43   | 2.05   | 668233 | 5316071 | 146.7 |
| U1651L5 | 32.92                    | 34.75                  | 1.83   | 10.38  | 668219 | 5316078 | 131.1 |
| U1651L5 | 49.38                    | 51.51                  | 2.13   | 4.8    | 668208 | 5316083 | 119.3 |
| U1652L5 | 41.91                    | 43.43                  | 1.52   | 2.13   | 668174 | 5316061 | 154.4 |
| U1652L5 | 48.77                    | 50.29                  | 1.52   | 2.26   | 668168 | 5316064 | 153.8 |
| U1652L5 | 52.88                    | 78.64                  | 25.76  | 4.17   | 668153 | 5316071 | 152.1 |
| U1652L5 | 79.25                    | 82.45                  | 3.2    | 7.61   | 668139 | 5316077 | 150.1 |
| U1654L5 | 46.94                    | 48.31                  | 1.37   | 3.29   | 668145 | 5316042 | 155.5 |
| U1654L5 | 49.23                    | 74.37                  | 25.14  | 4.49   | 668132 | 5316048 | 154.8 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U1655L5 | 3.35                     | 4.57                   | 1.22   | 2.4    | 668187 | 5316024 | 152.7 |
| U1655L5 | 17.37                    | 24.38                  | 7.01   | 2.6    | 668176 | 5316030 | 140.9 |
| U1655L5 | 25.91                    | 33.07                  | 7.16   | 3.1    | 668171 | 5316033 | 134.9 |
| U1655L5 | 38.98                    | 48.77                  | 9.79   | 2.44   | 668161 | 5316038 | 125.1 |
| U1656L5 | 2.9                      | 5.94                   | 3.04   | 2.67   | 668189 | 5316022 | 151   |
| U1656L5 | 48.77                    | 52.73                  | 3.96   | 2.14   | 668189 | 5316026 | 104.8 |
| U1657L5 | 27.74                    | 36.27                  | 8.53   | 2.11   | 668132 | 5316014 | 156.3 |
| U1657L5 | 37.19                    | 39.93                  | 2.74   | 2.35   | 668126 | 5316017 | 156.1 |
| U1657L5 | 44.81                    | 59.44                  | 14.63  | 9.67   | 668113 | 5316022 | 155.4 |
| U1658L5 | 14.78                    | 27.43                  | 12.65  | 2.39   | 668148 | 5316007 | 140.8 |
| U1659L5 | 6.71                     | 12.04                  | 5.33   | 2.63   | 668163 | 5316000 | 146.1 |
| U1659L5 | 21.64                    | 22.86                  | 1.22   | 2.06   | 668163 | 5316000 | 133.3 |
| U1659L5 | 38.07                    | 38.71                  | 0.64   | 3.98   | 668163 | 5316001 | 117.1 |
| U1659L5 | 44.5                     | 48.62                  | 4.12   | 3.32   | 668163 | 5316002 | 109   |
| U1660L5 | 10.97                    | 14.78                  | 3.81   | 2.1    | 668122 | 5315983 | 156.8 |
| U1660L5 | 17.07                    | 17.98                  | 0.91   | 3.57   | 668118 | 5315985 | 156.7 |
| U1660L5 | 18.44                    | 23.77                  | 5.33   | 2.43   | 668115 | 5315987 | 156.6 |
| U1660L5 | 27.89                    | 31.09                  | 3.2    | 2.51   | 668107 | 5315990 | 156.4 |
| U1660L5 | 41.76                    | 42.82                  | 1.06   | 3.36   | 668095 | 5315995 | 155.9 |
| U1661L5 | 4.27                     | 31.7                   | 27.43  | 2.94   | 668123 | 5315983 | 143.4 |
| U1662L5 | 3.66                     | 17.68                  | 14.02  | 2.58   | 668098 | 5315960 | 157   |
| U1663L5 | 0.61                     | 6.71                   | 6.1    | 6.56   | 668107 | 5315957 | 153.5 |
| U1664L5 | 3.35                     | 19.05                  | 15.7   | 3.61   | 668109 | 5315955 | 144.7 |
| U1665L5 | 0                        | 4.11                   | 4.11   | 3.1    | 668113 | 5315954 | 157.1 |
| U1666L5 | 8.53                     | 10.52                  | 1.99   | 2.12   | 668094 | 5315929 | 157.5 |
| U1667L5 | 7.92                     | 8.84                   | 0.92   | 2.13   | 668073 | 5315935 | 157.3 |
| U1669L5 | 2.13                     | 3.66                   | 1.53   | 5.69   | 668086 | 5315933 | 160.5 |
| U1671L5 | 0                        | 1.98                   | 1.98   | 5.21   | 668069 | 5315920 | 157.2 |
| U1671L5 | 45.72                    | 46.63                  | 0.91   | 2.33   | 668035 | 5315891 | 157.6 |
| U1673L5 | 7.92                     | 10.09                  | 2.17   | 2.73   | 668065 | 5315914 | 157.3 |
| U1673L5 | 88.39                    | 101.19                 | 12.8   | 2.3    | 668010 | 5315848 | 154.8 |
| U1675L5 | 7.01                     | 21.03                  | 14.02  | 5.86   | 668109 | 5315973 | 157.1 |
| U1676L5 | 0                        | 18.9                   | 18.9   | 2.29   | 668114 | 5315970 | 152.2 |
| U1677L5 | 9.45                     | 11.28                  | 1.83   | 3.51   | 668139 | 5315993 | 151.8 |
| U1677L5 | 11.89                    | 24.54                  | 12.65  | 4.38   | 668133 | 5315996 | 148.5 |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U1677L5 | 24.99                    | 35.05                  | 10.06  | 7.14   | 668123 | 5316000 | 143.5 |
| U1680L5 | 54.25                    | 62.48                  | 8.23   | 2.05   | 668216 | 5316118 | 160.1 |
| U1680L5 | 96.01                    | 97.99                  | 1.98   | 4.39   | 668181 | 5316133 | 161.3 |
| U1680L5 | 108.81                   | 122.38                 | 13.57  | 3.68   | 668164 | 5316141 | 161.5 |
| U1680L5 | 122.99                   | 129.24                 | 6.25   | 2.79   | 668154 | 5316145 | 161.5 |
| U1683L5 | 0                        | 6.1                    | 6.1    | 4.69   | 668305 | 5316055 | 156.7 |
| U1686L4 | 7.62                     | 8.53                   | 0.91   | 3.09   | 668320 | 5316661 | 191.4 |
| U1686L4 | 28.8                     | 30.33                  | 1.53   | 2.26   | 668340 | 5316651 | 190.3 |
| U1686L4 | 33.53                    | 37.19                  | 3.66   | 4.35   | 668345 | 5316649 | 189.9 |
| U1686L4 | 39.17                    | 40.84                  | 1.67   | 11.51  | 668349 | 5316647 | 189.7 |
| U1687L4 | 15.85                    | 24.38                  | 8.53   | 6.73   | 668326 | 5316656 | 205   |
| U1688L4 | 5.79                     | 22.1                   | 16.31  | 3.77   | 668322 | 5316626 | 192   |
| U1688L4 | 40.69                    | 43.74                  | 3.05   | 2.09   | 668348 | 5316615 | 192   |
| U1688L4 | 56.69                    | 58.22                  | 1.53   | 2.88   | 668362 | 5316609 | 192   |
| U1689L4 | 2.13                     | 13.11                  | 10.98  | 2.24   | 668314 | 5316630 | 198.6 |
| U1690L4 | 11.55                    | 16.46                  | 4.91   | 2.65   | 668304 | 5316635 | 206.6 |
| U1691L4 | 53.19                    | 57.91                  | 4.72   | 13.29  | 668358 | 5316580 | 192.2 |
| U1691L4 | 59.13                    | 63.25                  | 4.12   | 3.23   | 668363 | 5316578 | 192   |
| U1692L4 | 8.53                     | 10.91                  | 2.38   | 3.23   | 668311 | 5316599 | 200.1 |
| U1692L4 | 24.08                    | 26.52                  | 2.44   | 4.91   | 668322 | 5316595 | 211   |
| U1693L4 | 17.53                    | 19.54                  | 2.01   | 2.09   | 668286 | 5316608 | 192.1 |
| U1694L4 | 1.83                     | 3.69                   | 1.86   | 2.28   | 668306 | 5316568 | 192.5 |
| U1694L4 | 5.36                     | 7.32                   | 1.96   | 4.94   | 668309 | 5316566 | 192.5 |
| U1694L4 | 28.96                    | 29.87                  | 0.91   | 2.06   | 668330 | 5316557 | 192.1 |
| U1694L4 | 31.39                    | 39.62                  | 8.23   | 2.22   | 668335 | 5316555 | 192   |
| U1694L4 | 41.45                    | 44.81                  | 3.36   | 3.73   | 668342 | 5316552 | 191.7 |
| U1694L4 | 45.87                    | 57.3                   | 11.43  | 8.76   | 668350 | 5316548 | 191.4 |
| U1695L4 | 25.6                     | 26.52                  | 0.92   | 2.4    | 668317 | 5316562 | 213.5 |
| U1697L4 | 0                        | 3.96                   | 3.96   | 3.37   | 668302 | 5316536 | 192.8 |
| U1697L4 | 39.93                    | 41                     | 1.07   | 2.23   | 668337 | 5316520 | 192.7 |
| U1699L4 | 48.62                    | 51.21                  | 2.59   | 2.56   | 668340 | 5316477 | 192.7 |
| U1700L4 | 20.12                    | 21.03                  | 0.91   | 3.22   | 668309 | 5316495 | 208.7 |
| U1701L4 | 0                        | 6.86                   | 6.86   | 3.76   | 668292 | 5316507 | 193   |
| U1702L4 | 0                        | 2.74                   | 2.74   | 3.82   | 668294 | 5316506 | 190.9 |
| U1703L4 | 18.9                     | 19.81                  | 0.91   | 10.8   | 668313 | 5316464 | 193   |

| Hole ID | Intersection<br>From (m) | Intersection<br>To (m) | Length | Au g/t | x      | Y       | Z     |
|---------|--------------------------|------------------------|--------|--------|--------|---------|-------|
| U1703L4 | 24.69                    | 29.57                  | 4.88   | 2.75   | 668320 | 5316461 | 193   |
| U1703L4 | 38.71                    | 47.55                  | 8.84   | 4.07   | 668334 | 5316453 | 192.8 |
| U1705L4 | 7.32                     | 10.67                  | 3.35   | 2.14   | 668285 | 5316478 | 193.1 |
| U1705L4 | 11.58                    | 12.8                   | 1.22   | 2.09   | 668282 | 5316480 | 193.1 |
| U1708L4 | 30.48                    | 33.38                  | 2.9    | 16.64  | 668263 | 5316457 | 193.1 |
| U1709L4 | 7.16                     | 13.11                  | 5.95   | 15.24  | 668285 | 5316446 | 185.1 |
| U1710L4 | 8.23                     | 10.82                  | 2.59   | 2.46   | 668268 | 5316417 | 193.2 |
| U1722L5 | 0                        | 2.13                   | 2.13   | 2.55   | 668295 | 5316233 | 155.6 |
| U1722L5 | 3.81                     | 4.42                   | 0.61   | 2.13   | 668293 | 5316234 | 155.7 |
| U1722L5 | 16.76                    | 17.37                  | 0.61   | 4.11   | 668282 | 5316242 | 156   |
| U1722L5 | 31.39                    | 32.46                  | 1.07   | 4.94   | 668270 | 5316250 | 156.5 |
| U1723L5 | 10.67                    | 13.56                  | 2.89   | 4.5    | 668288 | 5316236 | 147   |
| U1723L5 | 20.57                    | 23.47                  | 2.9    | 3.19   | 668281 | 5316239 | 140.8 |
| U1725L5 | 0                        | 0.91                   | 0.91   | 2.47   | 668296 | 5316232 | 156.6 |
| U1725L5 | 23.16                    | 24.08                  | 0.92   | 2.78   | 668278 | 5316245 | 164.1 |

Note: \*True width not calculated, intercept reported as drilled length.



Figure 9-15: Red Pine Wawa Gold Project 2016 and 2018 Historical Diamond Drill Core Sampling Program Gold Gradea

## 10.0 DRILLING10.1 Drill Program Design and Implementation

The 2014 to 2022 drilling programs were initiated to further develop the gold inventory of the Project and to confirm the presence and tenor of gold mineralization in a selection of areas of the Surluga Deposit. Each program was approached strategically based on the newest information available. These strategic approaches included drilling along plunge of the high-grade zones and testing for parallel high-grade zones along the plane of the current resource and targeting areas of high probability based on the historical drilling sampling program. Along with drilling near the current resource, drill programs were designed to test mineralized structures in the hanging wall and footwall of the existing deposits to better understand the geometry of these mineralized zones. Along with these targets, several other historical mine sites of the property were tested to confirm historical results, to develop a structural model of the property and to determine if mineralized material remains outside of the mined areas reported. These areas include the Parkhill, Van Sickle, Darwin-Grace, the southern segment of the Jubilee Shear Zone and Minto Mine sites.

Over the course of the Project, 413 diamond drill holes have been completed for a total of 114,840.5 m of core drilled. Norex Drilling, out of Timmins, Ontario, completed the first drill program at the end of 2014; drilling six NQ (47.6-mm core diameter) drill holes for a total of 1,573 m. Rouillier Drilling, of Amos, Quebec, was contracted in 2015 and completed from that year to 2022 a total of 298 HQ (63.5-mm core diameter) drill holes totalling 74,028.3 m of drilling. In 2021 and 2022, All-Star drilling from Greater Sudbury in Ontario completed 9756.34 m of HQ drilling in 22 holes, and Forage Gyllis from Amos in Quebec completed 12,756.3 m of HQ drilling in 53 holes. In 2022 Forage Fusion from Hawkesbury in Ontario completed 16,726.48 m of HQ drilling in 34 holes. Table 10-1 summaries the details of the drill programs per year.

Access to the site and within the property is readily available and easily facilitated as the extensive historical work on the property has left a network of roads and trails throughout the property which are accessible via trucks, ATVs, or snowmobiles. The drills were moved between drill pads on skids behind a bulldozer.

| Year  | Number<br>of<br>Holes | Metres<br>Drilled | Company                 | Drilling Company                                       |
|-------|-----------------------|-------------------|-------------------------|--------------------------------------------------------|
| 2014  | 6                     | 1,573.00          | Red Pine<br>Exploration | Norex Drilling                                         |
| 2015  | 32                    | 5,538.80          | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2016  | 6                     | 1,722.00          | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2017  | 135                   | 29,800.00         | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2018  | 90                    | 24,864.00         | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2019  | 20                    | 4,349.00          | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2020  | 10                    | 5,322.18          | Red Pine<br>Exploration | Rouillier Drilling                                     |
| 2021  | 27                    | 11,093.61         | Red Pine<br>Exploration | All Star Mining, Rouillier Drilling & Forage<br>Gyllis |
| 2022  | 87                    | 30,577.91         | Red Pine<br>Exploration | Rouillier Drilling, Forage Gyllis & Forage<br>Fusion   |
| Total | 413                   | 114,840.50        |                         |                                                        |

Table 10-1: Summary of the 2014 to 2022 Wawa Gold Project Drill Holes

## 10.2 Summary Drill Program Results

Drilling successfully confirmed the presence of gold mineralization of significant in the areas of the Surluga Deposit where Red Pine's drilling corresponds to areas tested by the previous operators in the Surluga. Outside the footprints of the resources for the Surluga Deposit in the Jubilee Shear Zone and the Minto Mine Deposit in the Minto Mine Shear Zone, Red Pine's drilling demonstrated that gold mineralization extends away from the footprints of the existing mineral resources in both geological structures, but that additional drilling remains necessary to convert the discovered zones of mineralization into mineral resources. In mineralized shear zones, network of quartz veins and replacement zones satellite to the Surluga and Minto Mine deposits, Red Pine result indicate the presence of multiple corridors and zones of mineralization. This includes the Jubilee Stock between the Jubilee and the Hornblende shear zones, the Minto C Shear Zone, the Parkhill Number 4 Shear Zone, the southern segment of the Jubilee Shear Zone, the Minto B Shear Zone, the Hornblende Shear Zone, the Sadowski and Surluga North Vein networks and other undivided zones of mineralization. For all these geological structures, additional drilling is necessary to define their geometry, grade continuity and spatial extension of the mineralization zones to better ascertain their potential to host mineral resources. Highlights of the drill programs by Red Pine are listed in Table 10-2.

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True Width<br>(m) | Au (g/t) | Gold Zone             |
|------------|-------------|--------|---------------|---------------------------------|----------|-----------------------|
| SD-14-04   | 274.6       | 277.35 | 2.75          | 2.47                            | 36.21    | Jubilee Shear Zone    |
| Including  | 276.6       | 277.35 | 0.75          | 0.67                            | 104      | Jubilee Shear Zone    |
| SD-14-06   | 320.46      | 321.5  | 1.04          | 0.84                            | 42.3     | Jubilee Shear Zone    |
| SD-15-11   | 195.5       | 196.5  | 1             |                                 | 53.2     | Jubile Vein Network   |
| SD-15-11   | 216         | 217    | 1             |                                 | 51.7     | Jubile Vein Network   |
| HS-15-31   | 350.5       | 351.5  | 1             |                                 | 30.21    | Hornblende            |
| SD-16-40   | 141.1       | 142.1  | 1             |                                 | 33.08    | Jubilee Shear Zone    |
| SD-16-45   | 147.27      | 148.27 | 1             | 0.99                            | 44.41    | Jubilee Shear Zone    |
| SD-16-45   | 154.6       | 156.14 | 1.54          | 1.52                            | 89.26    | Jubilee Shear Zone    |
| Including  | 155.36      | 156.14 | 0.78          | 0.77                            | 176      | Jubilee Shear Zone    |
| SD-16-45   | 159.74      | 160.43 | 0.69          | 0.68                            | 36.8     | Jubilee Shear Zone    |
| DG-17-54   | 48          | 50.28  | 2.28          |                                 | 41.87    | Grace Shear Zone      |
| Including  | 48.64       | 50.28  | 1.64          |                                 | 61.94    | Grace Shear Zone      |
| DG-17-55   | 51.75       | 54.19  | 2.44          |                                 | 42.22    | Grace Shear Zone      |
| Including  | 53.15       | 53.69  | 0.54          |                                 | 107.49   | Grace Shear Zone      |
| DG-17-56   | 62.86       | 65.06  | 2.2           |                                 | 70.4     | Grace Shear Zone      |
| Including  | 63.95       | 65.06  | 1.11          |                                 | 138      | Grace Shear Zone      |
| SD-17-73   | 90.63       | 91.75  | 1.12          | 0.89                            | 39       | Minto Mine South      |
| SD-17-78   | 55.3        | 56.1   | 0.8           | 0.79                            | 51       | Minto Mine South      |
| SD-17-86   | 152.93      | 154.31 | 1.38          | 1.3                             | 36.08    | Minto Mine South      |
| SD-17-99   | 18.14       | 19.16  | 1.02          |                                 | 31.2     | Sadowski Vein Network |
| SD-17-101  | 206.4       | 207.4  | 1             |                                 | 34.6     | Minto Stockwork       |
| SD-17-107  | 197         | 198    | 1             | 1                               | 56.79    | Jubilee Shear Zone    |
| SD-17-117  | 127         | 128    | 1             | 0.56                            | 40.15    | Minto Mine South      |
| SD-17-131  | 108.3       | 110.3  | 2             |                                 | 41.2     | Minto Stockwork       |
| Including  | 108.3       | 109.32 | 1.02          |                                 | 48.41    | Minto Stockwork       |
| SD-17-131  | 244.21      | 245.3  | 1.09          | 0.72                            | 35.1     | Minto Mine South      |
| SD-17-172  | 90.57       | 91.59  | 1.02          | 0.54                            | 40.2     | Jubilee Shear Zone    |
| SD-18-222  | 257.88      | 258.6  | 0.72          | 0.52                            | 46.5     | Minto Mine South      |
| SD-18-228  | 268.5       | 269    | 0.5           | 0.49                            | 33.7     | Jubilee Shear Zone    |
| SD-18-234  | 272.77      | 274.7  | 1.93          | 1.88                            | 42.57    | Jubilee Shear Zone    |
| Including  | 273.7       | 274.7  | 1             | 0.98                            | 60.22    | Jubilee Shear Zone    |
| SD-18-241  | 151.85      | 152.5  | 0.65          | 0.57                            | 32.91    | Jubilee Shear Zone    |
| SD-18-243A | 205.96      | 208.77 | 2.81          | 2.74                            | 43.48    | Jubilee Shear Zone    |

## Table 10-2: Drill hole Highlights by Red Pine on the Wawa Gold Project During 2014 to 2022

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True Width<br>(m) | Au (g/t) | Gold Zone                  |
|------------|-------------|--------|---------------|---------------------------------|----------|----------------------------|
| Including  | 205.96      | 207.01 | 1.05          | 1.03                            | 72.1     | Jubilee Shear Zone         |
| SD-18-255  | 188.93      | 192.8  | 3.87          | 3.49                            | 36.01    | Jubilee Shear Zone         |
| Including  | 190.41      | 191.2  | 0.79          | 0.71                            | 98.6     | Jubilee Shear Zone         |
| SD-18-255  | 191.2       | 191.94 | 0.74          | 0.67                            | 68.1     | Jubilee Shear Zone         |
| SD-21-297A | 88.36       | 89.36  | 1             |                                 | 32.53    | Sadowski Vein Network      |
| SD-21-298A | 322.36      | 323.35 | 0.99          | 0.85                            | 314      | Minto Mine South           |
| SD-21-298A | 661.65      | 662.65 | 1             | 0.92                            | 45.8     | Jubilee Shear Zone         |
| SD-21-298A | 664.75      | 665.75 | 1             | 0.92                            | 45.5     | Jubilee Shear Zone         |
| SD-21-298A | 665.75      | 666.85 | 1.1           | 1.01                            | 38.3     | Jubilee Shear Zone         |
| SD-21-302  | 649.6       | 650.59 | 0.99          | 0.92                            | 95.36    | Jubilee Shear Zone         |
| SD-21-312A | 645.61      | 646.62 | 1.01          | 0.92                            | 57.99    | Jubilee Shear Zone         |
| SD-22-321  | 225.69      | 226.21 | 0.52          |                                 | 81.52    | Surluga North Vein Network |
| SD-22-326  | 245.27      | 245.68 | 0.41          |                                 | 69.3     | Surluga North Vein Network |
| SD-22-350  | 17.66       | 18.07  | 0.41          |                                 | 145.2    | Sadowski Vein Network      |
| SD-22-350  | 18.07       | 18.37  | 0.3           |                                 | 162.52   | Sadowski Vein Network      |
| SD-22-373  | 145.25      | 146.5  | 1.25          |                                 | 44.63    | Minto Stockwork            |
| SD-22-373  | 161.15      | 162.1  | 0.95          | 0.69                            | 80.8     | Minto Mine South           |
| SD-22-373  | 162.1       | 163.16 | 1.06          | 0.77                            | 231.5    | Minto Mine South           |
| SD-22-377  | 171.96      | 172.92 | 0.96          | 0.65                            | 46.48    | Minto Mine South           |
| SD-22-377  | 172.92      | 173.89 | 0.97          | 0.66                            | 53.72    | Minto Mine South           |
| JS-22-368  | 183.1       | 184.06 | 0.96          |                                 | 85.72    | Jubilee Shear Zone         |
| SD-22-379A | 71          | 71.69  | 0.69          |                                 | 59.7     | Sadowski Vein Network      |
| SD-22-396  | 243.59      | 245    | 1.41          |                                 | 30.97    | Surluga North Vein Network |
| SD-22-396  | 246         | 247    | 1             |                                 | 40.37    | Surluga North Vein Network |
## 10.2.1 Collar Survey

For the 2015 to 2022 drill programs, a Reflex TN-14 gyrocompass was utilized by a Red Pine geologist to align the drill head prior to casing installation. This device uses a north seeking gyro to provide high precision drill orientation. With several drill holes coming near historical underground workings, this tool was instrumental in obtaining precise azimuth and dip from surface. The drill holes from 2014 were aligned using a compass and front sights.

Drill collars were spotted prior to drilling using either a handheld Garmin Oregon GPS, a TopCon RTK GPS or a Trimble Geo 7X GPS. The Garmin Oregon GPS is limited to an accuracy of ± 5 m with minimal tree cover and moderately clear skies. In areas requiring higher precision, such as targets close to historical mine workings, a TopCon RTK GPS with sub-cm accuracy was utilised to ensure precise collar location. Upon completion of all drill holes, the collar location was surveyed using a TopCon RTK (Sub-cm accuracy) or Trimble Geo 7X GPS (Decimeter accuracy) to provide high precision collar location and elevation. A full list of collar locations, year drilled, hole depth, azimuth, and dip for each hole drilled during the 2014 to 2022 drill programs can be found in Table 10-3 and on Figure 10-1. Both the initial collar location and precise follow up positioning were completed by Red Pine personnel. The casing for all drill holes was left in place and capped with a red bolt-on metal cap and attached 0.9-m flag (Table 10-3).

| Hole ID  | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip |
|----------|-----------------|-------------|--------------|------------------|--------------|---------|-----|
| SD-14-01 | 2014            | 668306.4289 | 5316785.951  | 362.0774         | 127          | 317.5   | -62 |
| SD-14-02 | 2014            | 668306.7201 | 5316786.341  | 362.1116         | 231          | 328     | -65 |
| SD-14-03 | 2014            | 668441.6127 | 5316566.853  | 386.1723         | 309          | 340.1   | -62 |
| SD-14-04 | 2014            | 668449.26   | 5316299.655  | 373.139          | 330          | 340     | -65 |
| SD-14-05 | 2014            | 668364.8908 | 5317012.94   | 365.5181         | 234          | 225     | -47 |
| SD-14-06 | 2014            | 668205.348  | 5315774.937  | 347.905          | 342          | 345     | -45 |
| SD-15-07 | 2015            | 668240.569  | 5315919.444  | 347.569          | 279          | 305     | -56 |
| SD-15-08 | 2015            | 668545.9994 | 5316250.577  | 375.0206         | 363.8        | 324     | -60 |
| SD-15-09 | 2015            | 668314.5111 | 5316459.584  | 378.138          | 240          | 302     | -57 |
| SD-15-10 | 2015            | 668342.714  | 5316351.665  | 374.1515         | 255          | 338     | -57 |
| SD-15-11 | 2015            | 668271.7488 | 5316498.001  | 384.1848         | 228          | 300     | -57 |
| SD-15-12 | 2015            | 668270.6951 | 5316496.947  | 383.8793         | 163.09       | 320     | -60 |
| SD-15-13 | 2015            | 668321.9308 | 5316531.653  | 386.1218         | 213          | 318     | -65 |
| SD-15-14 | 2015            | 668341.1704 | 5316089.51   | 360.8327         | 291          | 323     | -56 |
| SD-15-15 | 2015            | 668218.5987 | 5316237.388  | 371.5028         | 195          | 323     | -55 |
| SD-15-16 | 2015            | 668255.856  | 5316336.26   | 370.6539         | 180          | 321     | -55 |
| SD-15-17 | 2015            | 668288.9537 | 5316374.202  | 370.4512         | 210          | 337     | -62 |
| SD-15-18 | 2015            | 668172.4035 | 5316366.746  | 371.2397         | 115.78       | 325     | -60 |
| SD-15-19 | 2015            | 668141.0811 | 5316463.351  | 364.326          | 135          | 326     | -59 |
| SD-15-20 | 2015            | 668218.9589 | 5316593.003  | 369.5407         | 123          | 326     | -59 |
| SD-15-21 | 2015            | 668162.7474 | 5316660.295  | 352.6966         | 75           | 320     | -50 |
| SD-15-22 | 2015            | 668248.435  | 5316728.757  | 352.7529         | 99.14        | 320     | -60 |
| SD-15-23 | 2015            | 668186.2901 | 5316801.856  | 351.2744         | 99           | 320     | -50 |
| SD-15-24 | 2015            | 668165.8128 | 5316869.359  | 352.7367         | 171          | 314     | -56 |
| SD-15-25 | 2015            | 668454.9421 | 5317006.393  | 369.1815         | 240          | 224.5   | -55 |
| SD-15-26 | 2015            | 668497.9977 | 5316262.542  | 382.9154         | 345.19       | 325     | -67 |
| HS-15-27 | 2015            | 668091.3241 | 5317471.368  | 340.6559         | 130          | 345     | -65 |
| HS-15-28 | 2015            | 668056.9119 | 5317402.983  | 340.7843         | 82.8         | 342     | -65 |
| HS-15-29 | 2015            | 668122.1817 | 5317297.034  | 344.3057         | 211          | 350     | -70 |
| HS-15-30 | 2015            | 668093.6425 | 5317232.934  | 348.715          | 208          | 350     | -70 |
| HS-15-31 | 2015            | 668252.5588 | 5316810.259  | 357.6049         | 385          | 310     | -56 |
| SM-15-32 | 2018            | 668917.5019 | 5315677.503  | 351              | 53.8         | 325     | -47 |
| SM-15-33 | 2015            | 668939.2265 | 5315706.494  | 352.5            | 82           | 215     | -47 |
| SM-15-34 | 2015            | 668962.0926 | 5315707.475  | 352.4            | 82           | 215     | -47 |
| SM-15-35 | 2015            | 668963.9333 | 5315707.261  | 352.4            | 100          | 145     | -45 |
| SM-15-36 | 2015            | 668951.3402 | 5315771.548  | 348.2            | 52           | 210     | -50 |
| SM-15-37 | 2015            | 668896.8123 | 5315674.829  | 351.9            | 58           | 325     | -47 |

Table 10-3: Details of 2014 to 2022 Drill Programs

| Hole ID   | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|-----------|-----------------|-------------|--------------|------------------|--------------|---------|-------|
| SM-15-38  | 2015            | 668720      | 5315742      | 371.1            | 75           | 25      | -47   |
| SM-15-39  | 2015            | 668724      | 5315758      | 369.8            | 52           | 190     | -50   |
| SD-16-40  | 2016            | 668302.0113 | 5316949.965  | 359.062          | 429          | 273     | -48   |
| SD-16-41  | 2016            | 668451.176  | 5317538.757  | 370.856          | 223          | 293     | -50   |
| SD-16-42  | 2016            | 668385.347  | 5317570.342  | 337.513          | 265          | 290     | -47   |
| SD-16-43  | 2016            | 668633.825  | 5318040.613  | 312.653          | 249          | 290     | -47   |
| SD-16-44  | 2016            | 668492.1516 | 5317385.668  | 388.8476         | 259          | 297     | -64   |
| SD-16-45  | 2016            | 668492.1516 | 5317385.668  | 388.8476         | 297          | 297     | -47   |
| SD-17-46  | 2017            | 668391.7174 | 5317277.07   | 376.4377         | 196          | 292.4   | -47.5 |
| SD-17-47  | 2017            | 668397.0679 | 5317246.315  | 372.2619         | 199          | 292     | -47.5 |
| SD-17-48  | 2017            | 668518.5933 | 5317469.372  | 375.4006         | 238          | 301.3   | -62.4 |
| SD-17-49  | 2017            | 668482      | 5317618      | 344.3            | 223          | 226.5   | -59.9 |
| SD-17-50  | 2017            | 668210.1508 | 5316939.567  | 361.4964         | 427          | 278     | -47   |
| SD-17-51  | 2017            | 668265.2379 | 5317083.566  | 365.3454         | 400          | 290.1   | -47.1 |
| SD-17-52  | 2017            | 668304.3265 | 5317328.742  | 349.3081         | 337          | 289.5   | -46.5 |
| DG-17-53  | 2017            | 668086      | 5313422.2    | 348.5            | 111          | 300     | -45   |
| DG-17-54  | 2017            | 668086      | 5313422.2    | 348.5            | 139          | 293     | -60   |
| DG-17-55  | 2017            | 668062.4    | 5313504.5    | 337.4            | 127          | 293     | -50   |
| DG-17-56  | 2017            | 668062.4    | 5313504.5    | 337.4            | 154          | 303     | -70   |
| DG-17-57  | 2017            | 668157      | 5313379      | 342.2            | 81.67        | 268     | -55   |
| DG-17-58  | 2017            | 668157      | 5313379      | 342.2            | 87.14        | 289     | -62   |
| DG-17-59  | 2017            | 668133      | 5313452      | 347              | 31           | 304     | -77   |
| DG-17-59A | 2017            | 668133      | 5313452      | 347              | 116.26       | 303     | -75   |
| DG-17-60  | 2017            | 668027.31   | 5313530.3    | 344.4            | 106          | 303     | -45   |
| DG-17-61  | 2017            | 668027.3    | 5313530.3    | 344.4            | 157          | 327     | -63   |
| DG-17-62  | 2017            | 668287      | 5313455      | 338.4            | 109          | 19.6    | -50   |
| DG-17-63  | 2017            | 668178.9    | 5313268.8    | 331.9            | 100          | 298     | -51   |
| DG-17-64  | 2017            | 668221.2    | 5313186.3    | 327.4            | 100          | 270.5   | -50   |
| DG-17-65  | 2017            | 668173.8    | 5313370.2    | 342.7            | 151          | 290.1   | -55.1 |
| DG-17-66  | 2017            | 668455      | 5313548      | 346.2            | 82           | 45      | -50   |
| PH-17-67  | 2017            | 668812.724  | 5314625.646  | 339.0841         | 120          | 15      | -60   |
| SM-17-68  | 2017            | 668948      | 5315534      | 345.1            | 199          | 340     | -45   |
| PH-17-69  | 2017            | 668615.5677 | 5314543.751  | 338.9099         | 147.49       | 300.4   | -54.6 |
| PH-17-70  | 2017            | 668727.6127 | 5314638.547  | 341.2216         | 121          | 358     | -54   |
| PH-17-71  | 2017            | 668559.0458 | 5314640.021  | 343.9482         | 187          | 125     | -75   |
| PH-17-72  | 2017            | 669077.226  | 5314579.05   | 348.0847         | 256          | 289.8   | -60.2 |
| SD-17-73  | 2017            | 668212.19   | 5315440.515  | 348.305          | 121          | 291.3   | -57.8 |
| SD-17-74  | 2017            | 668229.393  | 5315453.434  | 352.321          | 190          | 199.9   | -44.9 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y)        | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-------------|---------------------|------------------|--------------|---------|-------|
| SD-17-75   | 2017            | 668230.057  | 5315454.574         | 352.274          | 127          | 237     | -69   |
| SD-17-76   | 2017            | 668228.951  | 5315455.464         | 352.364          | 157          | 185     | -69   |
| SD-17-77   | 2017            | 668148.81   | 5315477.103         | 348.55           | 31           | 302.1   | -52.2 |
| SD-17-77A  | 2017            | 668148.81   | 5315477.103         | 348.55           | 451          | 304.1   | -51.8 |
| SD-17-78   | 2017            | 668148.851  | 5315473.939         | 348.26           | 94           | 225     | -45   |
| SD-17-79   | 2017            | 668152.107  | 5315474.287         | 347.98           | 100          | 170     | -45   |
| SD-17-80   | 2017            | 668174.349  | 5315512.254         | 346.361          | 415          | 300     | -45   |
| SD-17-81   | 2017            | 668172.889  | 5315509.749         | 346.143          | 103          | 70      | -75   |
| SD-17-82   | 2017            | 668172.450  | 5315511.913         | 346.019          | 154          | 150     | -65   |
| SD-17-83   | 2017            | 668200.850  | 5315641.817         | 352.52           | 373          | 285     | -45   |
| SD-17-84   | 2017            | 668258.4348 | 5316943.803         | 363.3154         | 418.5        | 270.9   | -50.9 |
| SD-17-85   | 2017            | 668309.3698 | 5315466.289         | 346.5906         | 172          | 250.4   | -60   |
| SD-17-86   | 2017            | 668309.3605 | 5315466.357         | 346.5916         | 184          | 215.4   | -55.1 |
| SD-17-87   | 2017            | 668491.0931 | 5317384.984         | 388.9847         | 354          | 278.5   | -55.1 |
| SD-17-88   | 2017            | 668302.1923 | 5315276.897         | 354.1003         | 139          | 306.8   | -45.1 |
| SD-17-89   | 2017            | 668309.1692 | 5315466.952         | 346.4747         | 202          | 195.4   | -65   |
| SD-17-90   | 2017            | 668309.1687 | 5315466.927         | 346.4656         | 196          | 193     | -50   |
| SD-17-91   | 2017            | 668491.5754 | 5317382.882         | 388.8291         | 264          | 240.1   | -60.1 |
| SD-17-92   | 2017            | 668311.8121 | 5315461.722         | 346.1229         | 181          | 315     | -45   |
| SD-17-93   | 2017            | 668492.9513 | 5317384.107         | 388.7834         | 39           | 191.8   | -75   |
| SD-17-93A  | 2017            | 668492.9513 | 5317384.107         | 388.7834         | 240          | 191.8   | -75   |
| SD-17-94   | 2017            | 668463.28   | 5315371.106         | 350.7991         | 241          | 267     | -45.8 |
| SD-17-95   | 2017            | 668456.5532 | 5317214.506         | 389.7076         | 227.01       | 293.3   | -48.1 |
| SD-17-96   | 2017            | 668464.2344 | 5315371.183         | 350.9322         | 262          | 268.4   | -67   |
| SD-17-97   | 2017            | 668456.9699 | 5317214.434         | 389.7217         | 297          | 315     | -55.2 |
| SD-17-98   | 2017            | 668456.1627 | 5317214.002         | 389.732          | 261          | 249.7   | -79.2 |
| SD-17-99   | 2017            | 668466.1256 | 5315370.997         | 351.0719         | 238          | 252     | -51   |
| SD-17-100  | 2017            | 668461.7685 | 5317131.58          | 387.9118333      | 255          | 275     | -45   |
| SD-17-101  | 2017            | 668466.1285 | 5315370.959         | 351.0714         | 286          | 243     | -62   |
| SD-17-102  | 2017            | 668461.7685 | 5317131.58          | 387.9118333      | 273          | 320     | -45   |
| SD-17-103A | 2017            | 668465.1601 | 5315368.891         | 350.7512         | 250          | 282     | -51.9 |
| SD-17-104  | 2017            | 668461.7685 | 5317131.58          | 387.9118333      | 270          | 315.1   | -66.5 |
| SD-17-105  | 2017            | 668302.1953 | 5315277.51          | 354.2358         | 142          | 320.2   | -61.9 |
| SD-17-106  | 2017            | 668302.9    | 5315276.309         | 353.9664         | 193          | 120.1   | -68.8 |
| SD-17-107  | 2017            | 668461.8    | 5317131.38          | 387.9            | 258          | 295     | -55   |
| SD-17-108  | 2017            | 668300.3257 | 5315276.967         | 353.9644         | 148          | 324.6   | -46.7 |
| SD-17-109  | 2017            | 668461.8    | 668461.8 5317131.58 |                  | 252          | 274.8   | -77.8 |
| SD-17-110A | 2017            | 668301.8442 | 5315278.3           | 354              | 159          | 354.6   | -71.7 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-------------|--------------|------------------|--------------|---------|-------|
| SD-17-111  | 2017            | 668303.0963 | 5315277.735  | 353.9496         | 81           | 20.1    | -44.8 |
| SD-17-112  | 2017            | 668303.014  | 5315278.79   | 354.0102         | 144          | 42.1    | -62.1 |
| SD-17-113  | 2017            | 668461.8    | 5317131.58   | 387.91           | 267          | 340     | -77   |
| SD-17-114  | 2017            | 668303.1    | 5315277.46   | 353.92           | 164          | 59.9    | -77.1 |
| SD-17-115  | 2017            | 668303.8    | 5315273.51   | 353.98           | 160          | 115.4   | -82   |
| SD-17-116  | 2017            | 668461.8    | 5317131.58   | 387.9            | 282          | 359.7   | -66.9 |
| SD-17-117  | 2017            | 668303.6    | 5315272.3    | 354.05           | 190          | 147     | -57   |
| SD-17-118  | 2017            | 668461.8    | 5317131.58   | 387.91           | 257.48       | 199.6   | -70.4 |
| SD-17-119  | 2017            | 668301.3    | 5315275.26   | 353.9            | 112          | 245     | -78   |
| SD-17-120  | 2017            | 668302.2    | 5315277.08   | 354.13           | 115          | 285     | -45   |
| SD-17-121  | 2017            | 668425.6058 | 5315287.067  | 362.5098         | 217          | 205     | -66   |
| SD-17-122  | 2017            | 668461.8    | 5317131.58   | 387.91           | 267          | 210.3   | -57.3 |
| SD-17-123  | 2017            | 668423.4    | 5315288.9    | 362.52           | 217.54       | 239.1   | -69   |
| SD-17-124  | 2017            | 668528.03   | 5317057.8    | 379.86           | 285          | 303.9   | -66   |
| SD-17-125  | 2017            | 668423.2    | 5315289.32   | 362.42           | 262          | 266     | -78   |
| SD-17-126  | 2017            | 668424.3    | 5315289.84   | 362.49           | 211          | 272     | -67   |
| SD-17-127  | 2017            | 668528      | 5317057.8    | 379.86           | 303          | 358     | -67   |
| SD-17-128  | 2017            | 668424.6    | 5315289.72   | 362.5            | 223          | 288.2   | -50.4 |
| SD-17-129  | 2017            | 668426.279  | 5315290.625  | 362.498          | 292          | 324.7   | -57.1 |
| SD-17-130  | 2017            | 668530.301  | 5317060.831  | 380.043          | 306          | 242     | -57.1 |
| SD-17-131  | 2017            | 668426.4    | 5315290.2    | 362.47           | 250.42       | 325     | -78   |
| SD-17-132  | 2017            | 668425.8    | 5315288.417  | 362.62           | 106          | 10      | -50   |
| SD-17-133  | 2017            | 668425.6    | 5315288.58   | 362.46           | 160          | 50      | -45   |
| SD-17-134  | 2017            | 668531.866  | 5317051.734  | 379.669          | 312          | 41.1    | -76.2 |
| SD-17-135  | 2017            | 668425.3    | 5315290.022  | 362.47           | 313          | 339.4   | -63   |
| SD-17-136  | 2017            | 668425.5    | 5315289.83   | 362.3            | 313          | 348     | -72   |
| SD-17-137  | 2017            | 668530.3    | 5317060.83   | 364.3            | 348          | 125.6   | -75.9 |
| SD-17-138  | 2017            | 668424.7    | 5315289.44   | 364.49           | 340          | 355     | -66   |
| SD-17-139  | 2017            | 668390.852  | 5316831.987  | 373.643          | 286.42       | 3.9     | -68.1 |
| SD-17-140  | 2017            | 668426.456  | 5315289.234  | 362.526          | 298          | 8.8     | -82.2 |
| SD-17-141  | 2017            | 668428.187  | 5315288.629  | 362.661          | 301          | 100.5   | -84.2 |
| SD-17-142  | 2017            | 668390.9    | 5316831.9    | 373.6            | 399          | 4.1     | -80.1 |
| SD-17-143  | 2017            | 668425.545  | 5315289.078  | 362.3995         | 253          | 267.6   | -88   |
| SD-17-144A | 2017            | 668425.816  | 5315290.07   | 362.522          | 235          | 308.3   | -62   |
| SD-17-145  | 2017            | 668425.487  | 5315287.299  | 362.497          | 226          | 204     | -80   |
| SD-17-146  | 2017            | 668390.68   | 5316832.079  | 373.738          | 319          | 6       | -57   |
| SD-17-147  | 2017            | 667975.4    | 5315166.67   | 347.75           | 145          | 307.8   | -47   |
| SD-17-148  | 2017            | 667973.2201 | 5315164.006  | 347.7783         | 127          | 220     | -46   |

| Hole ID    | Year<br>Drilled | Easting (X)                 | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-----------------------------|--------------|------------------|--------------|---------|-------|
| SD-17-149  | 2017            | 667973                      | 5315165.95   | 347.71           | 124          | 270     | -65   |
| SD-17-150  | 2017            | 668390.7                    | 5316831.759  | 373.665          | 310          | 132.3   | -70.8 |
| SD-17-151  | 2017            | 668413.067                  | 5315206.115  | 362.033          | 226          | 280     | -73.9 |
| SD-17-152  | 2017            | 668411.857                  | 5315207.224  | 362.385          | 163          | 262     | -45   |
| SD-17-153  | 2017            | 668390.072                  | 5316833.854  | 373.808          | 340.8        | 139.9   | -64.8 |
| SD-17-154  | 2017            | 668412.953                  | 5315209.123  | 362.495          | 34           | 245     | -62   |
| SD-17-154A | 2017            | 668412.953                  | 5315209.123  | 362.495          | 178.2        | 245     | -62   |
| SD-17-155  | 2017            | 668390.712                  | 5316831.759  | 373.666          | 309          | 73      | -73   |
| SD-17-156  | 2017            | 7 668408.335 5315211.789 36 |              | 362.413          | 141          | 227.3   | -45   |
| SD-17-157  | 2017            | 668390.68                   | 5316834.658  | 373.8499         | 370          | 193.9   | -50   |
| SD-17-158  | 2017            | 668408.335                  | 5315211.789  | 362.413          | 190          | 199.9   | -78.3 |
| SD-17-159  | 2017            | 668408.3                    | 5315211.789  | 362.4125         | 223          | 205     | -56   |
| SD-17-160  | 2017            | 668390.68                   | 5316834.658  | 373.8499         | 387          | 311.1   | -74.1 |
| SD-17-161  | 2017            | 668409.869                  | 5315212.031  | 363.785          | 256          | 187     | -47   |
| SD-17-162  | 2017            | 668408.8875                 | 5315197.592  | 360.1822         | 225.27       | 158.8   | -49.1 |
| SD-17-163  | 2017            | 668268.8282                 | 5316742.24   | 364.1523         | 247          | 173.1   | -61.7 |
| SD-17-164  | 2017            | 668411.067                  | 5315212.919  | 364.152          | 241          | 131.8   | -70   |
| SD-17-165  | 2017            | 668269.8446                 | 5316766.513  | 354.5749         | 199          | 122.2   | -62   |
| SD-17-166  | 2017            | 668408.887                  | 5315196.592  | 360.182          | 229          | 179     | -63.2 |
| SD-17-167  | 2017            | 668269.6                    | 5316767.9    | 353.5            | 505          | 305     | -54   |
| SD-17-168  | 2017            | 668411                      | 5315213      | 362.6            | 130          | 166.1   | -56.3 |
| SD-17-169  | 2017            | 668409                      | 5315197      | 360.2            | 205          | 324.8   | -76.1 |
| SD-17-170  | 2017            | 668084.206                  | 5316426.283  | 353.075          | 271          | 60      | -50.9 |
| SD-17-171  | 2017            | 668413.026                  | 5315218.222  | 363.3            | 229          | 325     | -63   |
| SD-17-172  | 2017            | 668084.206                  | 5316426.283  | 353.473          | 214          | 130.1   | -66.1 |
| SD-17-173  | 2017            | 668084.206                  | 5316426.283  | 353.5            | 472          | 305     | -53.8 |
| SD-17-174  | 2017            | 668412.2                    | 5315217.105  | 363.09           | 250          | 142     | -79   |
| SD-17-175  | 2017            | 668413.06                   | 5315218.222  | 362.6            | 268          | 150     | -58.8 |
| SD-17-176  | 2017            | 668084.206                  | 5316426.283  | 353.473          | 223          | 205     | -45.1 |
| SD-18-177  | 2018            | 668412.627                  | 5315216.847  | 364.385          | 217          | 168     | -55   |
| SD-18-178  | 2018            | 667965.607                  | 5316498.437  | 354.02           | 478          | 305     | -59   |
| SD-18-179  | 2018            | 668413                      | 5315218      | 363.3            | 235          | 164     | -69   |
| RV-18-180  | 2018            | 668754.082                  | 5318517.566  | 319.5            | 138          | 160.2   | -45.1 |
| SD-18-181  | 2018            | 668409.8685                 | 5315212.031  | 363.8            | 31           | 50      | -84   |
| SD-18-181A | 2018            | 668409.8685                 | 5315212.031  | 363.8            | 215          | 50      | -84   |
| RV-18-182  | 2018            | 668721.02                   | 5318476.914  | 314.238          | 259.18       | 304.7   | -50.1 |
| SD-18-183  | 2018            | 668410.272                  | 5315210.435  | 363.9            | 271          | 41      | -78   |
| SD-18-184  | 2018            | 668410.272                  | 5315210.435  | 363.9            | 242.05       | 95      | -77   |

| Hole ID   | Year<br>Drilled | Easting (X) | Northing (Y) Elevation<br>(Z) |         | Depth<br>(m) | Azimuth | Dip   |
|-----------|-----------------|-------------|-------------------------------|---------|--------------|---------|-------|
| RV-18-185 | 2018            | 668717      | 5318478                       | 314.3   | 69           | 159.6   | -44.9 |
| SD-18-186 | 2018            | 668007.75   | 5316884.79                    | 351     | 114          | 179.9   | -69.8 |
| SD-18-187 | 2018            | 668424.434  | 5315399.48                    | 349.055 | 246          | 284.9   | -45.1 |
| SD-18-188 | 2018            | 668424.716  | 5315399.455                   | 348.998 | 250          | 292     | -55   |
| SD-18-189 | 2018            | 668424.617  | 5315400.14                    | 349.123 | 256          | 300.1   | -45   |
| PH-18-190 | 2018            | 668799.154  | 5314220.573                   | 359.75  | 502          | 6.1     | -69   |
| SD-18-191 | 2018            | 668425.541  | 5315399.762                   | 349.179 | 250          | 299.6   | -65   |
| SD-18-192 | 2018            | 668425.036  | 5315400.384                   | 349.075 | 295          | 323     | -51   |
| SD-18-193 | 2018            | 668605.053  | 5315077.995                   | 368.459 | 277          | 298     | -61   |
| SD-18-194 | 2018            | 668605.053  | 5315077.995                   | 368.459 | 289          | 300.4   | -70   |
| SD-18-195 | 2018            | 668231.435  | 5315461.363                   | 351.169 | 157          | 172     | -53   |
| SD-18-196 | 2018            | 668230.8    | 5315461.614                   | 351.302 | 115          | 222     | -45   |
| SD-18-197 | 2018            | 668608.554  | 5315078.725                   | 367.737 | 355          | 282.1   | -84.9 |
| SD-18-198 | 2018            | 668231.226  | 5315463.839                   | 351.397 | 157          | 293     | -58   |
| SD-18-199 | 2018            | 668231.982  | 5315463.43                    | 351.38  | 154          | 353.7   | -80.2 |
| SD-18-200 | 2018            | 668234.124  | 5315463.55                    | 351.48  | 226          | 35      | -65   |
| SD-18-201 | 2018            | 668225.429  | 5315451.522                   | 352.298 | 140          | 180     | -45.8 |
| SD-18-202 | 2018            | 668608      | 5315079                       | 368.44  | 268          | 250.8   | -64.6 |
| SD-18-203 | 2018            | 668606.367  | 5315079.859                   | 367.946 | 295          | 257     | -45   |
| SD-18-204 | 2018            | 668606.865  | 5315078.165                   | 367.895 | 235          | 264     | -56   |
| SD-18-205 | 2018            | 668609.116  | 5315078.982                   | 367.631 | 328          | 324     | -62   |
| SD-18-206 | 2018            | 668607.775  | 5315077.873                   | 368.44  | 340          | 316     | -76   |
| SD-18-207 | 2018            | 668608.982  | 5315078.638                   | 368.44  | 290.42       | 312     | -59   |
| SD-18-208 | 2018            | 668430.447  | 5314966.088                   | 365.6   | 223          | 247     | -75   |
| SD-18-209 | 2018            | 668429.223  | 5314965.507                   | 364.645 | 185          | 247     | -45   |
| SD-18-210 | 2018            | 668485.275  | 5314893.462                   | 369.9   | 196          | 244     | -54   |
| SD-18-211 | 2018            | 668485.013  | 5314892.839                   | 369.8   | 223          | 191.2   | -54.1 |
| SD-18-212 | 2018            | 668487.778  | 5314892.08                    | 369.6   | 313          | 165     | -45.3 |
| SD-18-213 | 2018            | 668712.632  | 5314805.833                   | 345.948 | 289          | 219.9   | -45.3 |
| SD-18-214 | 2018            | 668713.231  | 5314806.45                    | 345.994 | 289          | 231.2   | -55.8 |
| SD-18-215 | 2018            | 668712.75   | 5314806.736                   | 345.908 | 286          | 249.9   | -50.9 |
| SD-18-216 | 2018            | 668601.809  | 5315073.028                   | 368.187 | 331          | 331.7   | -72.2 |
| SD-18-217 | 2018            | 668601.257  | 5315072.963                   | 368.189 | 331          | 322.3   | -66.1 |
| SD-18-218 | 2018            | 668601.052  | 5315073.208                   | 368.285 | 352          | 322.2   | -53.1 |
| SD-18-219 | 2018            | 668602.595  | 5315072.864                   | 368.163 | 277          | 285.8   | -76.7 |
| SD-18-220 | 2018            | 668602.692  | 5315073.119                   | 368.172 | 274          | 290.5   | -68.4 |
| SD-18-221 | 2018            | 668602.621  | 5315073.276                   | 368.168 | 262          | 279.3   | -61.3 |
| SD-18-222 | 2018            | 668602.673  | 5315074.852                   | 368.189 | 325          | 179.4   | -81.1 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-------------|--------------|------------------|--------------|---------|-------|
| SD-18-223  | 2018            | 668602.16   | 5315075.241  | 368.225          | 349          | 226.1   | -46.3 |
| SD-18-224  | 2018            | 668602.91   | 5315075.435  | 368.223          | 259          | 210     | -65.8 |
| SD-18-225  | 2018            | 668698.399  | 5315042.522  | 343.966          | 337          | 276.2   | -81.9 |
| SD-18-226  | 2018            | 668698.192  | 5315043.402  | 343.964          | 319          | 206     | -72   |
| SD-18-227  | 2018            | 668697.917  | 5315043.182  | 343.896          | 277          | 219     | -54.2 |
| SD-18-228  | 2018            | 668491.798  | 5316349.21   | 379.494          | 328          | 308     | -50   |
| SD-18-229  | 2018            | 668492.39   | 5316348.767  | 379.482          | 313          | 313.9   | -63.1 |
| SD-18-230  | 2018            | 668492.589  | 5316348.465  | 379.583          | 316          | 314.1   | -74.3 |
| SD-18-231  | 2018            | 668492.011  | 5316349.249  | 379.446          | 352          | 327     | -46.1 |
| SD-18-232  | 2018            | 668492.959  | 5316349.071  | 379.557          | 364          | 339     | -50   |
| SD-18-233  | 2018            | 668493.204  | 5316348.886  | 379.545          | 343          | 341     | -58   |
| SD-18-234  | 2018            | 668494.172  | 5316351.463  | 379.776          | 319          | 272.1   | -63.6 |
| SD-18-235  | 2018            | 668493.993  | 5316351.301  | 379.865          | 346          | 248.1   | -60   |
| SD-18-236  | 2018            | 668493.718  | 5316350.597  | 379.563          | 376          | 233.9   | -51.8 |
| SD-18-237  | 2018            | 668523.46   | 5316747.171  | 393.472          | 343          | 249     | -64.7 |
| SD-18-238  | 2018            | 668386.918  | 5316834.932  | 373.753          | 313          | 232.8   | -63.2 |
| SD-18-239  | 2018            | 668453.281  | 5317011.211  | 369.162          | 289          | 256.7   | -51.2 |
| SD-18-240  | 2018            | 668154.414  | 5316251.741  | 381.441          | 232          | 339.7   | -62.9 |
| SD-18-241  | 2018            | 668154.218  | 5316250.915  | 381.609          | 214          | 343.9   | -78.1 |
| SD-18-242  | 2018            | 668154.086  | 5316250.795  | 381.635          | 226          | 353     | -56.1 |
| SD-18-243A | 2018            | 668153.384  | 5316249.156  | 381.689          | 265          | 175.1   | -72   |
| SD-18-244  | 2018            | 668153.95   | 5316249.99   | 381.739          | 220          | 214.3   | -65.9 |
| SD-18-245  | 2018            | 668077.97   | 5316293.155  | 380.641          | 136          | 260.2   | -56.5 |
| SD-18-246  | 2018            | 668077.412  | 5316292.842  | 380.868          | 154          | 218.3   | -49.1 |
| SD-18-247  | 2018            | 668169.319  | 5315847.929  | 351.228          | 325          | 226.8   | -78.2 |
| SD-18-248  | 2018            | 668077.632  | 5316294.835  | 380.759          | 160          | 19.9    | -73.8 |
| SD-18-249  | 2018            | 668111.651  | 5316044.503  | 376.28           | 250          | 358.7   | -64   |
| SD-18-250  | 2018            | 668326.787  | 5315818.79   | 361.407          | 409          | 289     | -78   |
| SD-18-251  | 2018            | 668110.532  | 5316045.036  | 376.815          | 232          | 323.2   | -61   |
| SD-18-252  | 2018            | 668110.165  | 5316044.425  | 376.649          | 238          | 306     | -75.9 |
| SD-18-253  | 2018            | 668326.517  | 5315819.489  | 361.567          | 449          | 357.9   | -59.1 |
| SD-18-254  | 2018            | 668109.882  | 5316045.103  | 376.651          | 211          | 279.3   | -52.8 |
| SD-18-255  | 2018            | 668112.109  | 5316046.306  | 376.573          | 214          | 248.8   | -49.1 |
| SD-18-256  | 2018            | 668370.96   | 5315924.002  | 358.382          | 367          | 334.9   | -52.8 |
| SD-18-257  | 2018            | 667984.912  | 5315988.03   | 376.234          | 181          | 202.9   | -66.2 |
| SD-18-258  | 2018            | 668170.3    | 5315846.23   | 351.36           | 307          | 313.2   | -77.1 |
| SD-18-259  | 2018            | 668371.692  | 5315923.328  | 358.339          | 364          | 357     | -67.2 |
| SD-18-260  | 2018            | 668389.81   | 5315728.9    | 375.51           | 460          | 315     | -72.1 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-------------|--------------|------------------|--------------|---------|-------|
| SD-18-261  | 2018            | 668371.743  | 5315923.974  | 358.439          | 397          | 344     | -59.9 |
| SD-18-262  | 2018            | 668371.46   | 5315922.898  | 358.466          | 403          | 5       | -62.2 |
| SD-18-263  | 2018            | 668359.64   | 5316061.95   | 364.907          | 397          | 239.9   | -51   |
| SD-18-264  | 2018            | 668245.852  | 5316786.493  | 354.366          | 472          | 291.9   | -55.2 |
| CG-19-265  | 2019            | 669612.196  | 5317944      | 361.943          | 79           | 279.8   | -45   |
| CG-19-266  | 2019            | 669665.219  | 5317937.984  | 360.505          | 79           | 270     | -44.9 |
| CG-19-267  | 2019            | 669665.735  | 5317937.713  | 360.496          | 88           | 100     | -65   |
| CG-19-268  | 2019            | 669665.484  | 5317938.021  | 360.433          | 121          | 4.9     | -54.2 |
| CG-19-269  | 2019            | 669731.377  | 5317912.939  | 357.84           | 82           | 326.2   | -56   |
| CG-19-270  | 2019            | 669731.414  | 5317912.555  | 357.762          | 76           | 200.3   | -55.1 |
| CG-19-271  | 2019            | 669731.828  | 5317913.891  | 357.529          | 166          | 15.2    | -52.7 |
| CG-19-272  | 2019            | 669885.832  | 5317815.466  | 358.263          | 76           | 199.8   | -45   |
| CG-19-273  | 2019            | 669885.758  | 5317815.862  | 358.248          | 82           | 306     | -44.8 |
| CG-19-274  | 2019            | 669584.855  | 5318081.64   | 376.189          | 136          | 165     | -45.2 |
| CG-19-275  | 2019            | 669310.137  | 5318068.525  | 376.899          | 79           | 272.1   | -45.1 |
| SD-19-276  | 2019            | 667933.724  | 5316528.763  | 354.749          | 376          | 303.9   | -58.2 |
| SD-19-277  | 2019            | 667907.203  | 5316632.312  | 357.738          | 403          | 305     | -57   |
| SD-19-278  | 2019            | 667971.714  | 5316140.936  | 370.314          | 199          | 345     | -45.1 |
| SD-19-279  | 2019            | 667971.722  | 5316141.313  | 370.434          | 172          | 169.8   | -80.3 |
| SD-19-280  | 2019            | 667970.495  | 5316142.195  | 370.109          | 190          | 280     | -45.3 |
| SD-19-281  | 2019            | 668506.102  | 5316208.315  | 376.623          | 415          | 346     | -69.1 |
| SD-19-282  | 2019            | 668505.166  | 5316208.202  | 376.512          | 454          | 239.8   | -80.9 |
| SD-19-283  | 2019            | 668637.687  | 5316117.844  | 376.963          | 502          | 305     | -76.1 |
| SD-19-284  | 2019            | 668751.616  | 5316048.036  | 369.261          | 574          | 301     | -70.2 |
| SD-20-285  | 2020            | 668347.11   | 5315505.098  | 350.56           | 25           | 309     | -68.1 |
| SD-20-285A | 2020            | 668346.368  | 5315504.999  | 350.259          | 526.18       | 308.9   | -68.1 |
| SD-20-286  | 2020            | 668421.687  | 5315483.839  | 347.837          | 601          | 282.1   | -75   |
| SD-20-287  | 2020            | 668431      | 5315604      | 369.1            | 511          | 309.3   | -62   |
| SD-20-288  | 2020            | 668417.75   | 5315626.03   | 369.1            | 529          | 336.3   | -63   |
| SD-20-289  | 2020            | 668420.707  | 5315482.478  | 348.07           | 652          | 275     | -77.9 |
| SD-20-290  | 2020            | 668421      | 5315482      | 347.82           | 577          | 311.6   | -65.1 |
| SD-20-291  | 2020            | 668420.707  | 5315482.478  | 348.07           | 664          | 311.9   | -77.7 |
| SD-20-292  | 2020            | 668420.707  | 5315482.478  | 348.07           | 600          | 328.1   | -71.9 |
| SD-20-293  | 2020            | 668420.707  | 5315482.478  | 348.07           | 637          | 314.94  | -82   |
| SD-21-294  | 2021            | 668149.75   | 5316946.092  | 353.691          | 332          | 322.04  | -69   |
| SD-21-295  | 2021            | 668150.09   | 5316945.625  | 352.851          | 335          | 332.99  | -55.1 |
| SD-21-296  | 2021            | 668546.745  | 5315424.261  | 361.441          | 42           | 290.73  | -73   |
| SD-21-296A | 2021            | 668546.745  | 5315424.261  | 361.441          | 687          | 291.03  | -73.1 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) | Elevation<br>(Z) | Depth<br>(m) | Azimuth | Dip   |
|------------|-----------------|-------------|--------------|------------------|--------------|---------|-------|
| SD-21-297  | 2021            | 668546.622  | 5315423.351  | 360.702          | 81           | 279.9   | -76.1 |
| SD-21-297A | 2021            | 668546.067  | 5315423.036  | 362.173          | 726          | 280     | -76   |
| SD-21-298  | 2021            | 668546.518  | 5315423.164  | 361.287          | 84           | 272.1   | -74   |
| SD-21-298A | 2021            | 668546.518  | 5315423.164  | 361.287          | 729          | 271.74  | -74.3 |
| SD-21-299  | 2021            | 668581      | 5317216      | 390.9            | 372          | 304.6   | -48.7 |
| SD-21-300  | 2021            | 668546.416  | 5315425.173  | 359.757          | 441          | 311.02  | -77   |
| SD-21-301  | 2021            | 668581      | 5317216      | 390.9            | 380          | 323.71  | -62   |
| SD-21-302  | 2021            | 668535.82   | 5315449.456  | 359.372          | 732          | 269.4   | -72.1 |
| SD-21-303  | 2021            | 668580.535  | 5317216.404  | 388.12           | 498          | 324     | -74.7 |
| SD-21-304  | 2021            | 668579.947  | 5317215.933  | 389.166          | 390          | 300     | -70.2 |
| SD-21-305  | 2021            | 668478.44   | 5315397.333  | 354.777          | 36           | 282     | -82   |
| SD-21-305A | 2021            | 668478.718  | 5315398.755  | 355.421          | 705          | 300     | -83   |
| SD-21-306  | 2021            | 668639      | 5317299      | 396              | 390          | 296     | -50   |
| SD-21-307  | 2021            | 668477.921  | 5315397.935  | 355.147          | 708          | 302.75  | -72   |
| SD-21-308  | 2021            | 668639      | 5317299      | 396              | 501          | 295.69  | -74.7 |
| SD-21-309  | 2021            | 668535.452  | 5315367.966  | 363.531          | 714          | 298     | -78.5 |
| SD-21-310  | 2021            | 667870.992  | 5316649.059  | 360.661          | 396          | 305     | -57   |
| SD-21-311  | 2021            | 668639      | 5317299      | 395.8            | 58           | 310     | -45   |
| SD-21-312  | 2021            | 668463.169  | 5315330.738  | 359.047          | 65           | 293     | -77   |
| SD-21-312A | 2021            | 668463.169  | 5315330.738  | 359.047          | 702.4        | 297.41  | -77   |
| SD-21-313  | 2021            | 668537.78   | 5315367.431  | 362.531          | 815.34       | 298     | -82.5 |
| DG-21-314  | 2021            | 668442.812  | 5313498.634  | 347.589          | 83.87        | 5.01    | -45.3 |
| DG-21-315  | 2021            | 668443.327  | 5313499.354  | 346.544          | 90           | 305     | -48.2 |
| DG-22-316  | 2022            | 668442.756  | 5313500.537  | 346.193          | 96           | 310     | -81   |
| DG-22-317  | 2022            | 668447.508  | 5313500.248  | 346.268          | 99           | 260     | -57   |
| DG-22-318  | 2022            | 668443.862  | 5313497.053  | 349.414          | 90           | 45      | -45.1 |
| SD-22-319  | 2022            | 668467.314  | 5315330.377  | 356.146          | 666          | 300     | -85.4 |
| SD-22-319A | 2022            | 668467.314  | 5315330.377  | 356.146          | 603          | 305     | -85.4 |
| DG-22-320  | 2022            | 668130.877  | 5313460.956  | 348.736          | 148          | 307     | -45.4 |
| SD-22-321  | 2022            | 668635      | 5317292      | 396.5            | 368          | 333     | -69   |
| DG-22-322  | 2022            | 668131.668  | 5313462.322  | 349.216          | 222          | 317     | -45   |
| DG-22-323  | 2022            | 668132.268  | 5313460.229  | 348.566          | 240          | 318     | -60   |
| DG-22-324  | 2022            | 668130.391  | 5313511.144  | 339.868          | 123.3        | 282     | -47.3 |
| DG-22-325  | 2022            | 668060.888  | 5313503.777  | 338.558          | 120          | 311     | -48.4 |
| SD-22-326  | 2022            | 668635      | 5317292      | 396.5            | 523          | 337     | -58.2 |
| DG-22-327  | 2022            | 668022.701  | 5313541.226  | 348.421          | 144          | 334.67  | -45.3 |
| DG-22-328  | 2022            | 668026.041  | 5313539.294  | 349.215          | 174          | 352     | -56.8 |
| DG-22-329  | 2022            | 668280.967  | 5313460.834  | 338.854          | 276.52       | 276     | -50   |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) | Northing (Y) Elevation<br>(Z) |        | Azimuth | Dip    |
|------------|-----------------|-------------|--------------|-------------------------------|--------|---------|--------|
| SD-22-330  | 2022            | 668635      | 5317292      | 396.5                         | 461    | 354     | -65.2  |
| SD-22-331  | 2022            | 668538.117  | 5315367.431  | 362.689                       | 24     | 270.13  | -76.6  |
| SD-22-331A | 2022            | 668538.117  | 5315367.431  | 362.689                       | 527    | 270     | -76.7  |
| SD-22-331B | 2022            | 668538.117  | 5315367.431  | 362.689                       | 800    | 270     | -76.4  |
| SD-22-332  | 2022            | 668635      | 5317292      | 396.5                         | 428    | 313     | -45    |
| DG-22-333  | 2022            | 668281.585  | 5313460.608  | 339.399                       | 87     | 278     | -75    |
| DG-22-334  | 2022            | 668281.17   | 5313459.344  | 340.39                        | 300    | 237.91  | -60    |
| DG-22-335  | 2022            | 668281.839  | 5313465.179  | 336.062                       | 141    | 315     | -45.4  |
| DG-22-336  | 2022            | 668282.764  | 5313459.634  | 338.745                       | 353.78 | 227.02  | -64.9  |
| SD-22-337  | 2022            | 668635      | 5317292      | 396.5                         | 446    | 16      | -70.2  |
| DG-22-338  | 2022            | 668384.615  | 5313145.432  | 327.781                       | 453    | 291     | -71.7  |
| DG-22-339  | 2022            | 668386.616  | 5313146.37   | 330.36                        | 405    | 291.46  | -62.2  |
| SD-22-340  | 2022            | 668635      | 5317292      | 396.5                         | 461    | 1.83    | -60.7  |
| DG-22-341  | 2022            | 668385.009  | 5313147.067  | 328.865                       | 314    | 291.46  | -55    |
| SD-22-342  | 2022            | 668537.398  | 5315368.133  | 362.257                       | 737    | 332     | -67.5  |
| DG-22-343  | 2022            | 668382.415  | 5313148.507  | 330.233                       | 307    | 293.85  | -46.2  |
| DG-22-344  | 2022            | 668386.929  | 5313143.355  | 331.951                       | 111    | 285     | -57    |
| DG-22-344A | 2022            | 668385.923  | 5313145.234  | 328.539                       | 387    | 285.65  | -56.9  |
| SD-22-345  | 2022            | 668751      | 5317239      | 393.4                         | 419    | 313.78  | -60.7  |
| DG-22-346  | 2022            | 668244.832  | 5313075.895  | 324.18                        | 96     | 264.98  | -45.3  |
| DG-22-347  | 2022            | 668245.815  | 5313075.904  | 322.244                       | 104.94 | 264.98  | -65    |
| DG-22-348  | 2022            | 668244.676  | 5313075.715  | 322.363                       | 105    | 295.97  | -45.1  |
| DG-22-349  | 2022            | 668249      | 5313070      | 322.4                         | 106.37 | 225.9   | -44.9  |
| SD-22-350  | 2022            | 668535.386  | 5315366.049  | 360.355                       | 716    | 279     | -63.5  |
| DG-22-351  | 2022            | 668403.862  | 5313455.446  | 352.096                       | 132    | 320     | -66.9  |
| SD-22-352  | 2022            | 668751      | 5317239      | 393.0046141                   | 467    | 322.41  | -69.7  |
| DG-22-353  | 2022            | 668407.011  | 5313455.038  | 351.646                       | 144    | 15.01   | -76    |
| DG-22-354  | 2022            | 668404.163  | 5313454.324  | 349.727                       | 149.7  | 91.7    | -84.7  |
| DG-22-355  | 2022            | 668402.745  | 5313456.016  | 352.823                       | 120    | 255.4   | -81    |
| JS-22-356  | 2022            | 667660.178  | 5313350.919  | 347.185                       | 339.08 | 307     | -45.1  |
| SD-22-357  | 2022            | 668751      | 5317239      | 393                           | 426.73 | 337.7   | -65.2  |
| JS-22-358  | 2022            | 667662      | 5313350      | 343.0719662                   | 503.58 | 285.13  | -60    |
| JS-22-359  | 2022            | 667662      | 5313350      | 343.0719662                   | 456    | 238.13  | -47    |
| SD-22-360  | 2022            | 668469.513  | 5315334.392  | 359.805                       | 716    | 292     | -72.5  |
| SD-22-361  | 2022            | 668750.274  | 5317240.69   | 394.885                       | 499.93 | 340     | -57.5  |
| JS-22-362  | 2022            | 667657.479  | 5313349.498  | 345.675                       | 446.83 | 332     | -51.2  |
| SD-22-363  | 2022            | 668751      | 5317239      | 393.0046141                   | 475.62 | 353.92  | -62.9  |
| SD-22-364  | 2022            | 668471.785  | 5315334.526  | 358.378                       | 800    | 268.1   | -81.33 |

| Hole ID    | Year<br>Drilled | Easting (X) | Northing (Y) Elevation<br>(Z) |             | Depth<br>(m) | Azimuth | Dip    |
|------------|-----------------|-------------|-------------------------------|-------------|--------------|---------|--------|
| JS-22-365  | 2022            | 667662      | 5313350                       | 343.0719662 | 267          | 284.88  | -75.18 |
| JS-22-366  | 2022            | 667721.3    | 5313544.3                     | 348.3       | 462          | 310.31  | -51.09 |
| SD-22-367  | 2022            | 668419.6    | 5315235.3                     | 364.279406  | 750          | 310.92  | -76.51 |
| JS-22-368  | 2022            | 667721.3    | 5313544.3                     | 348.3       | 420          | 334.68  | -47.17 |
| JS-22-369  | 2022            | 667721.312  | 5313544.331                   | 348.325     | 345          | 264.88  | -75.88 |
| JS-22-370  | 2022            | 667721.312  | 5313544.331                   | 348.325     | 480          | 264.88  | -48.8  |
| SD-22-371  | 2022            | 668419.6    | 5315235.3                     | 364.279406  | 723          | 308.55  | -72.56 |
| JS-22-372  | 2022            | 667721.312  | 5313544.331                   | 348.325     | 288          | 342.88  | -69.9  |
| SD-22-373  | 2022            | 668410      | 5315216.6                     | 362.413     | 713          | 301.15  | -72.41 |
| JS-22-374  | 2022            | 667640.771  | 5313061.854                   | 343.296     | 456          | 235.35  | -47.34 |
| JS-22-375  | 2022            | 667641.296  | 5313064.902                   | 343.996     | 327          | 325.17  | -50.03 |
| SD-22-376  | 2022            | 667907      | 5316631                       | 357         | 398          | 268.1   | -81.33 |
| SD-22-377  | 2022            | 668410      | 5315216.6                     | 362.413     | 260          | 310.83  | -62.97 |
| JS-22-378  | 2022            | 667641.772  | 5313063.903                   | 343.563     | 255          | 325.17  | -71.3  |
| SD-22-379  | 2022            | 668566      | 5315302                       | 370.9629883 | 95           | 265.86  | -77.85 |
| SD-22-379A | 2022            | 668566      | 5315302                       | 370.9629883 | 824          | 265.66  | -77.82 |
| SD-22-380  | 2022            | 668751      | 5317239                       | 393.0046141 | 432.37       | 297.17  | -82.97 |
| EM-22-381  | 2022            | 669354      | 5313682                       | 354         | 153          | 74      | -53.02 |
| SD-22-382  | 2022            | 668750.151  | 5317240.392                   | 393.985     | 419.17       | 296.8   | -73.56 |
| JS-22-383  | 2022            | 668100.3679 | 5314688.218                   | 353.98      | 282          | 325.25  | -46.96 |
| JS-22-384  | 2022            | 668100      | 5314688                       | 353.9       | 270          | 260.11  | -47.1  |
| SD-22-385  | 2022            | 668751      | 5317239                       | 393         | 416          | 296.8   | -63    |
| SD-22-386  | 2022            | 668561      | 5315304                       | 371.0617199 | 776          | 286.93  | -71.99 |
| JS-22-387  | 2022            | 668100      | 5314688                       | 354         | 210.12       | 261.18  | -79.73 |
| JS-22-388  | 2022            | 668001      | 5314532                       | 369         | 156          | 275.36  | -47.1  |
| SD-22-389  | 2022            | 668751      | 5317239                       | 393         | 396.83       | 336.34  | -78.29 |
| JS-22-390  | 2022            | 668001      | 5314532                       | 369         | 159.04       | 275.36  | -79.1  |
| JS-22-391  | 2022            | 668011.399  | 5314527.355                   | 370.608     | 180          | 353.31  | -57.01 |
| JS-22-392  | 2022            | 668179.171  | 5314673.414                   | 349.974     | 213          | 301.41  | -65.96 |
| JS-22-393  | 2022            | 668179.857  | 5314674.456                   | 350.941     | 210          | 250     | -75.5  |
| SD-22-394  | 2022            | 668751.269  | 5317241.888                   | 394.037     | 443          | 354.05  | -70.58 |
| SD-22-395  | 2022            | 668752.363  | 5317243.004                   | 398.427     | 23           | 14.67   | -73    |
| SD-22-395A | 2022            | 668752.363  | 5317243.004                   | 398.427     | 473          | 15.15   | -73.18 |
| SD-22-396  | 2022            | 668897.35   | 5317420                       | 385         | 443          | 290.36  | -56.1  |



Figure 10-1: Diamond Drill Hole Collar Location 2014 to 2022



Figure 10-2 Oblique cross-section looking north-east with new drilling of the Jubilee Shear Zone.



Figure 10-3 Oblique cross-section looking north-east of new drilling intersecting the Minto and Jubilee Shear Zones





#### 10.2.2 Down-Hole Survey

A down-hole survey was completed on all holes during the 2014 to 2022 drill programs to gain as much information as possible from each drill hole. While drilling was undertaken, a Reflex EZ-shot was used to provide in-hole azimuth and dip. This survey was completed approximately 10 to 20 m below the bottom of the drill casing and every 30 m following the initial measurement. This device uses magnetism for its measurements, and it should be noted that in areas where ferromagnetism is prevalent in the rocks, measurements can be unreliable for azimuth readings. All down-hole surveys were completed by the drilling contractors at the drill and repeats, when feasible, were asked for missed or bad surveys.

The down-hole survey was an important aspect to drilling, as the drill holes typically flatten and bend to the right. This effectively decreases the dip and increases the azimuth. With underground workings in the area, it was integral to ensure that not only the location of the collar was correct, but also to effectively track the path of the drill holes as they progressed to target depth.

## 10.2.3 Core Recovery

Core recovery was important to each drilling program as core orientation procedures were a strategic part of the exploration program. The core was pieced together by a Red Pine geologist or Red Pine core technician to obtain a continuous run. Therefore, any missing core can be problematic. Discussions with the drilling team were routine to ensure all efforts were made to achieve the highest possible core recovery rates. As such, a high level of core recovery (>95%) was achieved throughout the drilling programs.

#### 10.2.4 Core Handling Procedure

The core was boxed at the drill and labelled with the drill hole ID and box number. Metre blocks were inserted at the end of each drill run every three metres. A lid was placed on the box, taped shut, and transported by truck, ATV or snowmobile from the drill to the core logging facility (the core shack). For the 2014 drilling program, these steps were completed at the drill by Norex Drilling personnel and the 2015 to 2022 drilling programs were completed at the drill the personnel of the drilling contractors. The core shack is located on the Wawa Gold Property, near the town of Wawa, no more than 6 km from any of the drill hole locations. After arrival at the core shack, the core boxes were opened and, in the winter, moved inside to defrost prior to geotechnical processing and logging. The core is checked for bloc errors and for mistakes in core placement. A quick log of the core is also completed to evaluate if the geological targets were intersected. After these steps, a more thorough examination of the drill core is done during core logging in the core shack that is described in section 10.3 and intervals of core are selected for sampling. Once a truck load of samples was accumulated in the core shack, they were subsequently shipped to the lab for assay analysis. Sequentially numbered security seals are utilized on each bag of samples to maintain secure shipping and an appropriate chain of custody.

# 10.3 Geotechnical Core Processing

Prior to the beginning of the geological logging, core pieces were properly fitted, an orientation line was drawn, and metre marks were promptly labelled referencing the blocks identified by the drillers every run (3 m); start and end of each core box was marked on the box and recorded in an Excel<sup>™</sup> file creating a box info file. From there, the geological logging procedure was carried out by a Red Pine geologist.

#### 10.3.1 Structure

The Reflex ACTIII was used in conjunction with drilling to indicate the orientation of the drill core as it came out of the drill hole. The entire length of core was pieced together to obtain a continuous, or near continuous run from the top to bottom of each hole. Depending on the level of confidence, a solid line (>95% confidence) or dashed line (<95% confidence) was then drawn on the core connecting the orientation marks made at the drill site at the end of each run. The level of confidence of the orientation line increases with the ability to line-up multiple orientation marks. This solid or dashed line represents the bottom of the core in the hole, providing a reference line to make structural measurements. Structural features of interest were then marked on the core and measured relative to the previously mentioned line, noting the bottom of core using the alpha-beta method and level of confidence. This method utilizes a transparent tube (Holcombe Alpha-Beta Protractor) with angles relative to the long axis (alpha) and angles around the circumference of the core (beta). Structural measurements are validated (QA/QC) with the use of 3D software (Leapfrog, Target) and known structural orientation of intended target. All structure data was processed by Red Pine and used for modelling and targeting.

#### 10.3.2 SWIR

Short Wave Infrared Reflectance (SWIR) data was systematically acquired on every metre of core. The data was acquired using a TerraSpec 4 Hi-Res Mineral Spectrometer designed by PANalytical (Figure 10-3). At the beginning of every data acquisition period, the spectrometer was allowed a 30-minute period of warming up to stabilize the signal. To obtain reflectance values that were comparable between drill holes, a Spectralon® certified reflectance standard was used during data acquisition. To correct for drifting and changing light conditions, a standard measurement was taken every 10 to 15 minutes. The spectrometer conditions were optimized at the beginning of each period of measurement, and every two hours during data acquisition or whenever there were drastic changes of light conditions.

SWIR data was acquired on a metre-by-metre basis to simplify the acquisition procedures and provide more flexibility in the order in which the core was measured. For each metre, between 4 and 6 equally spaced individual spot measurements were taken along the core. Signal biasing was addressed by avoiding taking measurements in local features (e.g., small veins). The raw spectra which was acquired using the customized software that came with the spectrometer was then processed using The Spectral Geologist (TSGTM) software to get the spectral mineralogy of each spot measurements. Different spectral scalars, specific to white micas, chlorite, carbonate, biotite, and tourmaline, which were the minerals found to be directly related to the metasomatic processes related to the gold mineralizing fluids, were then calculated for each hole being measured.



Figure 10-5: TerraSpec 4 Hi-Res Mineral Spectrometer and Data Acquisition Computer on the Rolling Table Used to Acquire SWIR Data on Historical Core

Using a proprietary script developed for the R software (R Project for Statistical Computing - https://www.rproject.org/), the data for each metre was consolidated to one point for each set of minerals. This consolidation was based on the minerals identified by TSGTM. For each of the identified minerals in a metre, the specific spectral scalars for each data point were averaged for the entire row. The script then assigned a 'from – to' for each point and created graphics to portray the down-hole variations of spectral scalars of interest known to be spatially related to gold zones. These graphs and the detection of certain minerals help to ensure that even zones with cryptic gold indicators were sampled, and the three-dimensional integration of the data was used to map the maturity of the shear zone at the edges for future exploration.

## 10.4 Core Logging and Analyses

## 10.4.1 Core Logging

The core was visually inspected and logged based on the geologist's descriptions and from 2014 to the spring of 2017, recorded in Gemslogger software, an extension of Microsoft access. In the spring of 2017, Red Pine switched logging software and started using MXDeposit (Geosoft). Through this conversion, new data collection tables and abbreviations were created, which are included with the complete logs in the drill hole database. The incorporation of a variety of analytical methods was utilized to best describe the lithological units. These included testing for magnetism with a magnet, reactivity with 10% HCL, scratch testing with a nail or tungsten scribe to estimate hardness, portable XRF reading, colour, texture, structure, grain size, pervasive alteration and contacts definition. These components were used to create a lithological description of the core from the top to bottom of each hole. The data collection system in MxDeposit is subdivided in different tables to collect data on lithologies veining, alteration forming replacement, the attribute of deformation and name of the geological structure, and mineralization minerals.

Alteration and rock type identification were systematically supported by the SWIR analyses and by spot measurements using a portable XRF. The portable XRF units used by the company are programmed with predefined element ratios that characterize favourability for gold (white mica intensity ratio derived from internal work) and the nature of the host rocks (Zr/TiO<sub>2</sub>).

## 10.4.2 Core Sampling

Core sampling intervals were based on favourable visual indicators known to be associated with gold mineralization and the presence of favourable alterations detected by the SWIR and portable XRF analyzers. For the Project, the key visual indicators of gold mineralization, based on Red Pine's experience on the Project, are shearing, pervasively disseminated sulphides in the core (mostly pyrite), quartz veining, pervasive white mica alteration, contact zones between two units with indications of shearing and fluid circulation, and pervasive chloritization with iron carbonate alteration in mafic units. Each sampled interval of 0.5 m to 1.5 m was described in an Excel<sup>™</sup> spreadsheet and later updated with the applicable assay results.

Upon completion of logging, samples tags are inserted in 0.5-m to 1.5-m intervals and at lithological contacts within the zone of mineralization. Sample tags are placed and stapled into the core boxes at the end of each sample. Once sample locations were determined, the core was cut in half and one half of the core was placed in a durable plastic sample bag with a sample tag matching that of the other half remaining in core storage located on the property for future reference. Samples were then separated into groups of 5 to 6 and placed in durable rice bags for transport.

#### 10.4.3 Magnetic Susceptibility

A Terraplus KT-10 magnetic susceptibility meter was used to provide quantitative data of the magnetism of the rock at each metre down the length of the drill hole. Magnetic susceptibility measurements are important as many of the gold zones of the Project have shoulders that are selectively enriched with magnetite, forming a positive magnetic susceptibility anomaly around these gold zones that are themselves demagnetized. The magnetic susceptibility readings are downloaded and recorded in an Excel<sup>™</sup> spreadsheet for each drill hole.

#### 10.4.4 Density Measurements

Specific gravity (SG) measurements were collected on all drill holes based on representative 10 cm intervals selected by a Red Pine geologist. One or two pieces of core were selected per major lithological unit and marked for measurement by the geologist or core technician and recorded in an Excel<sup>™</sup> spreadsheet for each drill hole. The SG was determined by weighing a piece of core in air and in water and calculating SG using formula:

 $SG = \frac{Sample \ Weight \ in \ Air}{Sample \ Weight \ in \ Air - Sample \ Weight \ in \ Water}$ 

## 10.4.5 Core Photography

Dry and wet digital photographs were taken of all core drilled on the 2014 to 2022 drilling programs. When all steps of the core logging procedure are completed and the sample tags are inserted, digital photos of each core box are taken individually or in group depending on the photography system used and each picture and recorded in the database. A chalk board with the Hole ID, box number and meterage contained in the box is utilized for labelling purposes. If sample tag IDs are visible on the camera then photos are deemed to be in focus and complete.

## 10.4.6 Core Sampling QA/QC Protocol

As part of the QA/QC protocols, a CRM standard is regularly inserted into the sampling order with a standard every 20 samples and blank every 25 samples. The standards used analogous to orogenic gold deposits at different certified grades manufactured by Ore Research & Exploration Pty Ltd (OREAS) (See Table 11-1 and Table 11-2 for a list of standards). These were routinely inserted into sample tag books prior to sampling to ensure appropriate spacing and regular insertion. The blanks were 200 g Bell & Mackenzie White Lightning® 2040) and are also pre-recorded in tag books. Short descriptions of the CRM and blanks are provided in Item 11.0.Commencing as of January 2023 quarter core field duplicates are taken when encountering VG or recognizing "Minto Event" style mineralization.

## 10.5 Assay Results

A summary of assay results (>2.7 g/t Au) from the 2014 to 2022 drilling programs is presented in Table 10-4. Assay highlights listed in Table 10-2 are highlighted in grey and italics. True widths have been calculated where the information is available based on orientation of the gold zone.

| Hole ID  | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone          |
|----------|-------------|--------|---------------|----------------------------------|-------------|--------------------|
| SD-14-01 | 77          | 78.1   | 1.1           | 1.06                             | 4.72        | Algoma Shear Zone  |
| SD-14-01 | 107.07      | 108.5  | 1.43          | 1.37                             | 3.25        | Jubilee Shear Zone |
| SD-14-01 | 108.5       | 109.6  | 1.1           | 1.06                             | 3.02        | Jubilee Shear Zone |
| SD-14-02 | 80.5        | 82.5   | 2             | 1.87                             | 3.85        | Algoma Shear Zone  |
| SD-14-02 | 119.5       | 120.5  | 1             | 0.93                             | 8.28        | Jubilee Shear Zone |
| SD-14-02 | 120.5       | 121.5  | 1             | 0.93                             | 4.35        | Jubilee Shear Zone |
| SD-14-02 | 121.5       | 122.42 | 0.92          | 0.86                             | 6.06        | Jubilee Shear Zone |
| SD-14-02 | 125.5       | 126.5  | 1             | 0.93                             | 11.3        | Jubilee Shear Zone |
| SD-14-03 | 255         | 256    | 1             | 0.9                              | 3.47        | Jubilee Shear Zone |
| SD-14-03 | 257         | 258    | 1             | 0.9                              | 8.17        | Jubilee Shear Zone |
| SD-14-03 | 265.1       | 266.2  | 1.1           | 0.99                             | 20.5        | Jubilee Shear Zone |
| SD-14-03 | 266.53      | 267.3  | 0.77          | 0.69                             | 15          | Jubilee Shear Zone |
| SD-14-03 | 268.5       | 269.65 | 1.15          | 1.03                             | 13.9        | Jubilee Shear Zone |
| SD-14-03 | 269.65      | 270.7  | 1.05          | 0.94                             | 14.6        | Jubilee Shear Zone |
| SD-14-04 | 256.5       | 257.5  | 1             | 0.9                              | 8.24        | Jubilee Shear Zone |
| SD-14-04 | 260.75      | 262    | 1.25          | 1.12                             | 4.09        | Jubilee Shear Zone |
| SD-14-04 | 263         | 264    | 1             | 0.9                              | 11.6        | Jubilee Shear Zone |
| SD-14-04 | 264         | 265    | 1             | 0.9                              | 6.37        | Jubilee Shear Zone |
| SD-14-04 | 265         | 266    | 1             | 0.9                              | 7.85        | Jubilee Shear Zone |
| SD-14-04 | 266         | 267    | 1             | 0.9                              | 3.8         | Jubilee Shear Zone |
| SD-14-04 | 267         | 267.77 | 0.77          | 0.69                             | 11.6        | Jubilee Shear Zone |
| SD-14-04 | 267.77      | 268.9  | 1.13          | 1.01                             | 6.42        | Jubilee Shear Zone |
| SD-14-04 | 270         | 271.12 | 1.12          | 1.01                             | 13.1        | Jubilee Shear Zone |
| SD-14-04 | 271.12      | 272.37 | 1.25          | 1.12                             | 3.72        | Jubilee Shear Zone |
| SD-14-04 | 273.64      | 274.6  | 0.96          | 0.86                             | 8.87        | Jubilee Shear Zone |
| SD-14-04 | 274.6       | 275.6  | 1             | 0.9                              | 9.77        | Jubilee Shear Zone |
| SD-14-04 | 275.6       | 276.6  | 1             | 0.9                              | 11.8        | Jubilee Shear Zone |
| SD-14-04 | 276.6       | 277.35 | 0.75          | 0.67                             | 104         | Jubilee Shear Zone |
| SD-14-04 | 281.5       | 282.5  | 1             | 0.9                              | 11.4        | Jubilee Shear Zone |
| SD-14-05 | 151.2       | 152.2  | 1             | 0.76                             | 3.81        | Jubilee Shear Zone |
| SD-14-05 | 155         | 156    | 1             | 0.76                             | 5.79        | Jubilee Shear Zone |
| SD-14-05 | 156         | 157    | 1             | 0.76                             | 10.3        | Jubilee Shear Zone |
| SD-14-05 | 157         | 158    | 1             | 0.76                             | 11.6        | Jubilee Shear Zone |
| SD-14-05 | 158         | 159    | 1             | 0.76                             | 22.6        | Jubilee Shear Zone |
| SD-14-05 | 159         | 160    | 1             | 0.76                             | 18.3        | Jubilee Shear Zone |
| SD-14-05 | 160         | 161    | 1             | 0.76                             | 23.4        | Jubilee Shear Zone |

# Table 10-4: Summary of Assay Results (> 2.7 g/t Au) and Gold Zone intersected from 2014 to 2022 Drilling Programs

| Hole ID  | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                      |
|----------|-------------|--------|---------------|----------------------------------|-------------|--------------------------------|
| SD-14-06 | 10.61       | 12.45  | 1.84          |                                  | 6.05        | Minto C Shear Zone             |
| SD-14-06 | 301.1       | 302.2  | 1.1           | 0.89                             | 4.85        | Jubilee Shear Zone             |
| SD-14-06 | 302.2       | 303.3  | 1.1           | 0.89                             | 11.9        | Jubilee Shear Zone             |
| SD-14-06 | 303.3       | 304.4  | 1.1           | 0.89                             | 2.82        | Jubilee Shear Zone             |
| SD-14-06 | 320.46      | 321.5  | 1.04          | 0.84                             | 42.3        | Jubilee Shear Zone             |
| SD-15-07 | 66          | 67     | 1             | 0.69                             | 10.7        | Minto B Shear Zone             |
| SD-15-07 | 67          | 68     | 1             | 0.69                             | 16.6        | Minto B Shear Zone             |
| SD-15-07 | 243         | 244    | 1             | 0.69                             | 3.54        | Jubilee Shear Zone             |
| SD-15-07 | 246         | 247    | 1             | 0.69                             | 2.75        | Jubilee Shear Zone             |
| SD-15-07 | 247         | 248    | 1             | 0.69                             | 9.25        | Jubilee Shear Zone             |
| SD-15-08 | 328.35      | 329.35 | 1             | 0.95                             | 11.5        | Jubilee Shear Zone             |
| SD-15-10 | 228.39      | 229.4  | 1.01          | 0.9                              | 16.2        | Jubilee Shear Zone             |
| SD-15-11 | 195.5       | 196.5  | 1             |                                  | 53.2        | Jubilee Mine Vein Network      |
| SD-15-11 | 216         | 217    | 1             |                                  | 51.7        | Jubilee Mine Vein Network      |
| SD-15-12 | 151.1       | 152.1  | 1             | 0.96                             | 5           | Jubilee Shear Zone             |
| SD-15-13 | 172.35      | 173.7  | 1.35          | 1.29                             | 2.81        | Jubilee Shear Zone             |
| SD-15-14 | 254.11      | 255    | 0.89          | 0.84                             | 8.49        | Jubilee Shear Zone             |
| SD-15-14 | 268.8       | 269.8  | 1             | 0.95                             | 9.99        | Jubilee Shear Zone             |
| SD-15-14 | 272.2       | 273    | 0.8           | 0.76                             | 2.71        | Jubilee Shear Zone             |
| SD-15-14 | 273         | 273.18 | 0.18          | 0.17                             | 5           | Jubilee Shear Zone             |
| SD-15-14 | 282         | 283    | 1             | 0.95                             | 11.2        | Jubilee Shear Zone             |
| SD-15-17 | 141.9       | 143.48 | 1.58          |                                  | 2.73        | Replacement Zone               |
| SD-15-19 | 74.48       | 75.5   | 1.02          | 0.96                             | 4.95        | Jubilee Shear Zone             |
| SD-15-19 | 75.5        | 76.5   | 1             | 0.94                             | 4.8         | Jubilee Shear Zone             |
| SD-15-19 | 84.6        | 85.6   | 1             | 0.94                             | 5.11        | Jubilee Shear Zone             |
| SD-15-22 | 56.04       | 57     | 0.96          | 0.92                             | 5.67        | Jubilee Shear Zone             |
| SD-15-22 | 72          | 73     | 1             | 0.96                             | 3.21        | Jubilee Shear Zone             |
| SD-15-23 | 30.6        | 31.6   | 1             | 0.95                             | 3.86        | Jubilee Shear Zone             |
| SD-15-24 | 161         | 162    | 1             |                                  | 2.88        | Wawa Gold Corridor – Intrusion |
| SD-15-25 | 198.75      | 199.75 | 1             | 0.81                             | 4.46        | Jubilee Shear Zone             |
| SD-15-25 | 201.75      | 202.75 | 1             | 0.81                             | 3.42        | Jubilee Shear Zone             |
| SD-15-25 | 202.75      | 203.75 | 1             | 0.81                             | 3.49        | Jubilee Shear Zone             |
| SD-15-25 | 204.75      | 205.75 | 1             | 0.81                             | 3.96        | Jubilee Shear Zone             |
| SD-15-26 | 275         | 276    | 1             | 0.94                             | 3.24        | Jubilee Shear Zone             |
| SD-15-26 | 277         | 278    | 1             | 0.94                             | 4.53        | Jubilee Shear Zone             |
| SD-15-26 | 280         | 281    | 1             | 0.94                             | 2.8         | Jubilee Shear Zone             |
| SD-15-26 | 281         | 282    | 1             | 0.94                             | 3.16        | Jubilee Shear Zone             |
| SD-15-26 | 283.03      | 284    | 0.97          | 0.91                             | 3.39        | Jubilee Shear Zone             |

| Hole ID  | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                         |
|----------|-------------|--------|---------------|----------------------------------|-------------|-----------------------------------|
| SD-15-26 | 285.11      | 286.1  | 0.99          | 0.93                             | 4.01        | Jubilee Shear Zone                |
| SD-15-26 | 286.1       | 287.1  | 1             | 0.94                             | 8.49        | Jubilee Shear Zone                |
| SD-15-26 | 287.1       | 288.1  | 1             | 0.94                             | 17.89       | Jubilee Shear Zone                |
| SD-15-26 | 290         | 291.1  | 1.1           | 1.04                             | 4.78        | Jubilee Shear Zone                |
| SD-15-26 | 291.1       | 292    | 0.9           | 0.85                             | 4.07        | Jubilee Shear Zone                |
| SD-15-26 | 292         | 292.97 | 0.97          | 0.91                             | 2.99        | Jubilee Shear Zone                |
| SD-15-26 | 293.85      | 294.85 | 1             | 0.94                             | 4.53        | Jubilee Shear Zone                |
| SD-15-26 | 298.13      | 299.13 | 1             | 0.94                             | 11.2        | Jubilee Shear Zone                |
| HS-15-27 | 26          | 27.4   | 1.4           | 1.23                             | 9.7         | Hornblende Shear Zone             |
| HS-15-27 | 28.4        | 29.73  | 1.33          | 1.17                             | 3.23        | Hornblende Shear Zone             |
| HS-15-27 | 31          | 32.1   | 1.1           | 0.97                             | 3.28        | Hornblende Shear Zone             |
| HS-15-28 | 27          | 27.82  | 0.82          | 0.73                             | 2.84        | Hornblende Shear Zone             |
| HS-15-28 | 29.5        | 30.5   | 1             | 0.89                             | 5.77        | Hornblende Shear Zone             |
| HS-15-29 | 148         | 149    | 1             | 0.87                             | 3.1         | Hornblende Shear Zone             |
| HS-15-30 | 1.5         | 2.5    | 1             |                                  | 3.77        | Wawa Gold Corridor – Intrusion    |
| HS-15-30 | 10          | 11.4   | 1.4           |                                  | 3.82        | Wawa Gold Corridor – Intrusion    |
| HS-15-30 | 12.84       | 14     | 1.16          |                                  | 5.39        | Wawa Gold Corridor – Intrusion    |
| HS-15-30 | 155.97      | 157.52 | 1.55          | 1.35                             | 3.21        | Hornblende Shear Zone             |
| HS-15-31 | 63          | 64     | 1             | 0.98                             | 2.72        | Jubilee Shear Zone                |
| HS-15-31 | 65          | 66     | 1             | 0.98                             | 3.06        | Jubilee Shear Zone                |
| HS-15-31 | 72          | 73     | 1             | 0.98                             | 23.5        | Jubilee Shear Zone                |
| HS-15-31 | 75          | 76     | 1             | 0.98                             | 5.59        | Jubilee Shear Zone                |
| HS-15-31 | 76          | 77     | 1             | 0.98                             | 3.91        | Jubilee Shear Zone                |
| HS-15-31 | 77          | 78     | 1             | 0.98                             | 15.4        | Jubilee Shear Zone                |
| HS-15-31 | 80          | 81     | 1             | 0.98                             | 3.45        | Jubilee Shear Zone                |
| HS-15-31 | 350.5       | 351.5  | 1             | 0.98                             | 30.21       | Hornblende Shear Zone             |
| HS-15-31 | 352.5       | 353.4  | 0.9           | 0.88                             | 13.93       | Hornblende Shear Zone             |
| SM-15-32 | 21.4        | 22     | 0.6           |                                  | 6.65        | Mickelson Vein Network            |
| SM-15-35 | 41          | 41.75  | 0.75          |                                  | 28.6        | Mickelson Vein Network            |
| SD-16-40 | 93          | 94     | 1             | 0.98                             | 6.88        | Jubilee Shear Zone                |
| SD-16-40 | 141.1       | 142.1  | 1             | 0.98                             | 33.08       | Jubilee Shear Zone                |
| SD-16-41 | 161.33      | 162.09 | 0.76          | 0.76                             | 13.46       | Jubilee Shear Zone                |
| SD-16-43 | 48.65       | 49.5   | 0.85          | 0.84                             | 4.35        | Jasper Vein Network               |
| SD-16-43 | 50.1        | 51.03  | 0.93          | 0.92                             | 7.56        | Jasper Vein Network               |
| SD-16-44 | 24.57       | 25.3   | 0.73          |                                  | 11.61       | Vein network - Surluga North area |
| SD-16-44 | 37.8        | 38.8   | 1             |                                  | 7.07        | Vein network - Surluga North area |
| SD-16-44 | 41.43       | 42.25  | 0.82          |                                  | 10.7        | Vein network - Surluga North area |
| SD-16-44 | 49.82       | 50.82  | 1             |                                  | 15.83       | Vein network - Surluga North area |

| Hole ID  | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                      |
|----------|-------------|--------|---------------|----------------------------------|-------------|--------------------------------|
| SD-16-45 | 147.27      | 148.27 | 1             | 0.99                             | 44.41       | Jubilee Shear Zone             |
| SD-16-45 | 155.36      | 156.14 | 0.78          | 0.77                             | 176         | Jubilee Shear Zone             |
| SD-16-45 | 159.74      | 160.43 | 0.69          | 0.68                             | 36.8        | Jubilee Shear Zone             |
| SD-16-45 | 160.43      | 161.49 | 1.06          | 1.05                             | 9.27        | Jubilee Shear Zone             |
| SD-16-45 | 161.49      | 162.5  | 1.01          | 1                                | 2.75        | Jubilee Shear Zone             |
| SD-16-45 | 257.25      | 258    | 0.75          | 0.74                             | 11.56       | Jubilee Shear Zone             |
| SD-16-45 | 258         | 258.71 | 0.71          | 0.7                              | 6.35        | Jubilee Shear Zone             |
| SD-16-45 | 258.71      | 259.3  | 0.59          | 0.58                             | 7.85        | Jubilee Shear Zone             |
| SD-16-45 | 259.3       | 259.85 | 0.55          | 0.54                             | 3.78        | Jubilee Shear Zone             |
| SD-17-46 | 73          | 74     | 1             | 0.99                             | 3.55        | Jubilee Shear Zone             |
| SD-17-46 | 164.5       | 165.37 | 0.87          | 0.86                             | 10.7        | Jubilee Shear Zone             |
| SD-17-47 | 88.81       | 89.93  | 1.12          | 1.11                             | 3.45        | Jubilee Shear Zone             |
| SD-17-49 | 169.37      | 170.58 | 1.21          | 1.01                             | 4.21        | Jubilee Shear Zone             |
| SD-17-50 | 96.6        | 97.6   | 1             | 0.98                             | 11.8        | Jubilee Shear Zone             |
| SD-17-50 | 101.75      | 102.52 | 0.77          | 0.76                             | 4.95        | Jubilee Shear Zone             |
| SD-17-50 | 123.72      | 124.6  | 0.88          | 0.86                             | 5.15        | Jubilee Shear Zone             |
| SD-17-50 | 213.38      | 214.38 | 1             |                                  | 7.46        | Wawa Gold Corridor – Intrusion |
| SD-17-51 | 61.1        | 62.1   | 1             | 0.99                             | 3.63        | Jubilee Shear Zone             |
| SD-17-51 | 328         | 328.8  | 0.8           | 0.79                             | 12.7        | Hornblende Shear Zone          |
| SD-17-52 | 8           | 8.74   | 0.74          | 0.73                             | 9.81        | Jubilee Shear Zone             |
| SD-17-52 | 24          | 25     | 1             | 0.99                             | 7.49        | Jubilee Shear Zone             |
| SD-17-52 | 210.24      | 210.97 | 0.73          | 0.72                             | 11          | Hornblende Shear Zone          |
| DG-17-54 | 46.88       | 48     | 1.12          |                                  | 3.64        | Grace Shear Zone               |
| DG-17-54 | 48          | 48.64  | 0.64          |                                  | 41.75       | Grace Shear Zone               |
| DG-17-54 | 48.64       | 49.49  | 0.85          |                                  | 61.94       | Grace Shear Zone               |
| DG-17-54 | 49.49       | 50.28  | 0.79          |                                  | 20.36       | Grace Shear Zone               |
| DG-17-55 | 51.75       | 52.41  | 0.66          |                                  | 3.1         | Grace Shear Zone               |
| DG-17-55 | 52.41       | 53.15  | 0.74          |                                  | 29.55       | Grace Shear Zone               |
| DG-17-55 | 53.15       | 53.69  | 0.54          |                                  | 107.49      | Grace Shear Zone               |
| DG-17-55 | 53.69       | 54.19  | 0.5           |                                  | 42.11       | Grace Shear Zone               |
| DG-17-56 | 63.95       | 65.06  | 1.11          |                                  | 138         | Grace Shear Zone               |
| DG-17-56 | 65.06       | 66     | 0.94          |                                  | 26.69       | Grace Shear Zone               |
| DG-17-56 | 67.78       | 68.65  | 0.87          |                                  | 8.22        | Grace Shear Zone               |
| DG-17-63 | 73.74       | 74.71  | 0.97          |                                  | 8.26        | Grace Shear Zone               |
| DG-17-63 | 76.77       | 77.77  | 1             |                                  | 4.29        | Grace Shear Zone               |
| DG-17-66 | 15.18       | 16     | 0.82          |                                  | 10.1        | Nyman Shear Zone               |
| PH-17-70 | 38.49       | 40     | 1.51          |                                  | 6.23        | Parkhill Shear Zone            |
| PH-17-71 | 52.68       | 53.59  | 0.91          |                                  | 4.25        | Parkhill Shear Zone            |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                      |
|-----------|-------------|--------|---------------|----------------------------------|-------------|--------------------------------|
| PH-17-71  | 63.32       | 64     | 0.68          |                                  | 3.95        | Parkhill Shear Zone            |
| PH-17-71  | 155.07      | 156    | 0.93          |                                  | 8.13        | Parkhill #4 Shear Zone         |
| SD-17-73  | 43.28       | 44.28  | 1             |                                  | 3.39        | Minto Stockwork                |
| SD-17-73  | 90.63       | 91.75  | 1.12          | 0.89                             | 39          | Minto Mine Shear Zone          |
| SD-17-73  | 91.75       | 92.87  | 1.12          | 0.89                             | 14.1        | Minto Mine Shear Zone          |
| SD-17-74  | 107.61      | 108.54 | 0.93          | 0.83                             | 12          | Minto Mine Shear Zone          |
| SD-17-74  | 108.54      | 109.34 | 0.8           | 0.71                             | 3.11        | Minto Mine Shear Zone          |
| SD-17-75  | 103.13      | 104.13 | 1             | 0.89                             | 4.8         | Minto Mine Shear Zone          |
| SD-17-77A | 45.96       | 46.77  | 0.81          | 0.57                             | 9.17        | Minto Mine Shear Zone          |
| SD-17-77A | 49          | 49.9   | 0.9           | 0.63                             | 2.76        | Minto Mine Shear Zone          |
| SD-17-77A | 229.24      | 230.3  | 1.06          | 0.75                             | 4.36        | Minto B Shear Zone             |
| SD-17-78  | 55.3        | 56.1   | 0.8           | 0.79                             | 51          | Minto Mine Shear Zone          |
| SD-17-79  | 78.41       | 79.15  | 0.74          | 0.5                              | 14          | Minto Mine Shear Zone          |
| SD-17-79  | 79.15       | 79.88  | 0.73          | 0.5                              | 3.62        | Minto Mine Shear Zone          |
| SD-17-80  | 240.89      | 241.55 | 0.66          | 0.54                             | 6.06        | Minto B Shear Zone             |
| SD-17-82  | 119.5       | 121    | 1.5           |                                  | 3.44        | Shear Zone                     |
| SD-17-82  | 128.5       | 130    | 1.5           | 0.93                             | 2.97        | Minto Mine South               |
| SD-17-82  | 149.25      | 150    | 0.75          |                                  | 4.15        | Shear Zone                     |
| SD-17-83  | 292.35      | 293.57 | 1.22          | 1.2                              | 4.09        | Jubilee Shear Zone             |
| SD-17-84  | 36          | 36.63  | 0.63          | 0.62                             | 3.22        | Jubilee Shear Zone             |
| SD-17-84  | 67.75       | 69     | 1.25          | 1.22                             | 5.2         | Jubilee Shear Zone             |
| SD-17-84  | 210         | 211.08 | 1.08          |                                  | 2.81        | Wawa Gold Corridor – Intrusion |
| SD-17-85  | 54.8        | 55.82  | 1.02          |                                  | 4.72        | Shear Zone                     |
| SD-17-85  | 151         | 151.75 | 0.75          | 0.71                             | 6.7         | Minto Mine Shear Zone          |
| SD-17-85  | 151.75      | 152.3  | 0.55          | 0.52                             | 6.3         | Minto Mine Shear Zone          |
| SD-17-86  | 152.93      | 153.62 | 0.69          | 0.65                             | 47.18       | Minto Mine Shear Zone          |
| SD-17-86  | 153.62      | 154.31 | 0.69          | 0.65                             | 24.98       | Minto Mine Shear Zone          |
| SD-17-87  | 324.51      | 325.87 | 1.36          | 1.35                             | 3.79        | Hornblende Shear Zone          |
| SD-17-88  | 110         | 110.87 | 0.87          | 0.56                             | 16.9        | Minto Mine Shear Zone          |
| SD-17-89  | 166.86      | 167.86 | 1             | 0.84                             | 7.58        | Minto Mine Shear Zone          |
| SD-17-89  | 167.86      | 168.73 | 0.87          | 0.73                             | 9.74        | Minto Mine Shear Zone          |
| SD-17-89  | 168.73      | 169.53 | 0.8           | 0.67                             | 7.21        | Minto Mine Shear Zone          |
| SD-17-89  | 169.53      | 170.33 | 0.8           | 0.67                             | 9.82        | Minto Mine Shear Zone          |
| SD-17-90  | 166.97      | 168    | 1.03          | 0.88                             | 4.44        | Minto Mine Shear Zone          |
| SD-17-90  | 168         | 169    | 1             | 0.86                             | 26.54       | Minto Mine Shear Zone          |
| SD-17-91  | 144.25      | 145    | 0.75          | 0.68                             | 6.3         | Jubilee Shear Zone             |
| SD-17-92  | 165.35      | 166.3  | 0.95          | 0.55                             | 8.64        | Minto Mine Shear Zone          |
| SD-17-94  | 12.5        | 13.7   | 1.2           |                                  | 23.4        | Sadowski Vein System           |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone             |
|------------|-------------|--------|---------------|----------------------------------|-------------|-----------------------|
| SD-17-94   | 121         | 122    | 1             | 0.92                             | 5.06        | Minto Mine Shear Zone |
| SD-17-95   | 135.4       | 136.26 | 0.86          | 0.85                             | 3.53        | Algoma Shear Zone     |
| SD-17-95   | 179.68      | 180.67 | 0.99          | 0.98                             | 3.28        | Jubilee Shear Zone    |
| SD-17-95   | 186.16      | 187.33 | 1.17          | 1.16                             | 28.8        | Jubilee Shear Zone    |
| SD-17-96   | 4.6         | 5.6    | 1             |                                  | 6.58        | Sadowski Vein System  |
| SD-17-97   | 214.06      | 215.1  | 1.04          | 1.01                             | 3.31        | Jubilee Shear Zone    |
| SD-17-97   | 215.1       | 216.12 | 1.02          | 0.99                             | 10.4        | Jubilee Shear Zone    |
| SD-17-97   | 216.12      | 217.15 | 1.03          | 1                                | 3.21        | Jubilee Shear Zone    |
| SD-17-98   | 115.14      | 115.9  | 0.76          | 0.67                             | 13.6        | Algoma Shear Zone     |
| SD-17-99   | 3.63        | 4.4    | 0.77          |                                  | 7.29        | Sadowski Vein System  |
| SD-17-99   | 18.14       | 19.16  | 1.02          |                                  | 31.2        | Sadowski Vein System  |
| SD-17-99   | 211.5       | 212.26 | 0.76          | 0.74                             | 5.85        | Minto Mine Shear Zone |
| SD-17-101  | 206.4       | 207.4  | 1             |                                  | 34.6        | Minto Stockwork       |
| SD-17-102  | 124.02      | 125.1  | 1.08          | 1.01                             | 4.31        | Algoma Shear Zone     |
| SD-17-102  | 240.83      | 241.75 | 0.92          | 0.86                             | 11.49       | Jubilee Shear Zone    |
| SD-17-103A | 234.62      | 235.62 | 1             | 0.85                             | 6.6         | Minto Mine Shear Zone |
| SD-17-104  | 172.45      | 173.45 | 1             | 0.96                             | 3.1         | Jubilee Shear Zone    |
| SD-17-104  | 180.5       | 181.54 | 1.04          | 1                                | 3.6         | Jubilee Shear Zone    |
| SD-17-104  | 181.54      | 182.87 | 1.33          | 1.27                             | 4.89        | Jubilee Shear Zone    |
| SD-17-104  | 182.87      | 183.88 | 1.01          | 0.97                             | 3.14        | Jubilee Shear Zone    |
| SD-17-104  | 256.4       | 257.28 | 0.88          |                                  | 4.15        | Shear Zone            |
| SD-17-104  | 260.12      | 261.1  | 0.98          |                                  | 10.1        | Shear Zone            |
| SD-17-105  | 63.82       | 64.69  | 0.87          |                                  | 4.54        | Shear Zone            |
| SD-17-105  | 92          | 92.97  | 0.97          | 0.61                             | 16.21       | Minto Mine Shear Zone |
| SD-17-105  | 94          | 95     | 1             | 0.63                             | 11.07       | Minto Mine Shear Zone |
| SD-17-105  | 95          | 96     | 1             | 0.63                             | 2.72        | Minto Mine Shear Zone |
| SD-17-106  | 136.62      | 137.4  | 0.78          | 0.39                             | 7.8         | Minto Mine Shear Zone |
| SD-17-106  | 137.4       | 138.35 | 0.95          | 0.48                             | 8.34        | Minto Mine Shear Zone |
| SD-17-106  | 141.76      | 142.7  | 0.94          | 0.47                             | 10.2        | Minto Mine Shear Zone |
| SD-17-106  | 142.7       | 143.6  | 0.9           | 0.45                             | 7.56        | Minto Mine Shear Zone |
| SD-17-106  | 143.6       | 144.48 | 0.88          | 0.44                             | 3.56        | Minto Mine Shear Zone |
| SD-17-107  | 169.35      | 170.08 | 0.73          | 0.73                             | 3.21        | Jubilee Shear Zone    |
| SD-17-107  | 197         | 198    | 1             | 1                                | 56.79       | Jubilee Shear Zone    |
| SD-17-108  | 133.77      | 134.38 | 0.61          | 0.31                             | 10.5        | Minto Mine Shear Zone |
| SD-17-108  | 134.38      | 135    | 0.62          | 0.32                             | 8.49        | Minto Mine Shear Zone |
| SD-17-109  | 182.5       | 183.43 | 0.93          | 0.86                             | 6.24        | Jubilee Shear Zone    |
| SD-17-109  | 184.08      | 184.58 | 0.5           | 0.46                             | 17.03       | Jubilee Shear Zone    |
| SD-17-109  | 184.58      | 185.44 | 0.86          | 0.79                             | 19.49       | Jubilee Shear Zone    |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                         |
|------------|-------------|--------|---------------|----------------------------------|-------------|-----------------------------------|
| SD-17-110A | 96.36       | 97.12  | 0.76          |                                  | 3.74        | Shear Zone                        |
| SD-17-110A | 122.08      | 123    | 0.92          | 0.49                             | 4.11        | Minto Mine Shear Zone             |
| SD-17-111  | 54.88       | 55.81  | 0.93          |                                  | 5.53        | Shear Zone                        |
| SD-17-113  | 121.19      | 121.98 | 0.79          |                                  | 4.13        | Algoma Shear Zone                 |
| SD-17-113  | 121.98      | 122.67 | 0.69          |                                  | 15          | Vein network - Surluga North area |
| SD-17-113  | 224.14      | 225    | 0.86          |                                  | 3.38        | Jubilee Shear Zone                |
| SD-17-114  | 134.15      | 135.02 | 0.87          | 0.42                             | 2.9         | Minto Mine Shear Zone             |
| SD-17-114  | 138.8       | 139.8  | 1             | 0.49                             | 5.06        | Minto Mine Shear Zone             |
| SD-17-115  | 108.93      | 109.96 | 1.03          | 0.63                             | 12.07       | Minto Mine Shear Zone             |
| SD-17-115  | 109.96      | 110.96 | 1             | 0.61                             | 16.4        | Minto Mine Shear Zone             |
| SD-17-115  | 114.9       | 115.88 | 0.98          | 0.6                              | 3.47        | Minto Mine Shear Zone             |
| SD-17-117  | 126         | 127    | 1             | 0.56                             | 9.27        | Minto Mine Shear Zone             |
| SD-17-117  | 127         | 128    | 1             | 0.56                             | 40.15       | Minto Mine Shear Zone             |
| SD-17-117  | 129         | 130    | 1             | 0.56                             | 5.38        | Minto Mine Shear Zone             |
| SD-17-117  | 182         | 183    | 1             |                                  | 29.9        | Minto Stockwork                   |
| SD-17-118  | 198.08      | 198.69 | 0.61          | 0.47                             | 2.8         | Jubilee Shear Zone                |
| SD-17-121  | 120.96      | 121.96 | 1             |                                  | 3.7         | Minto Stockwork                   |
| SD-17-121  | 180         | 180.85 | 0.85          | 0.74                             | 10.9        | Minto Mine Shear Zone             |
| SD-17-123  | 138.5       | 139.5  | 1             |                                  | 3.92        | Minto Stockwork                   |
| SD-17-123  | 178.36      | 179.1  | 0.74          | 0.66                             | 8.06        | Minto Mine Shear Zone             |
| SD-17-124  | 218.26      | 219.12 | 0.86          | 0.84                             | 2.97        | Jubilee Shear Zone                |
| SD-17-125  | 219.37      | 220.66 | 1.29          | 0                                | 11.4        | Minto Stockwork                   |
| SD-17-126  | 142.49      | 143.25 | 0.76          |                                  | 8.41        | Minto Stockwork                   |
| SD-17-126  | 160         | 161    | 1             |                                  | 6.8         | Minto Stockwork                   |
| SD-17-126  | 186.65      | 187.42 | 0.77          | 0.66                             | 28.2        | Minto Mine Shear Zone             |
| SD-17-129  | 82.25       | 83     | 0.75          |                                  | 3.03        | Minto Stockwork                   |
| SD-17-130  | 217.8       | 218.8  | 1             | 0.9                              | 2.98        | Jubilee Shear Zone                |
| SD-17-131  | 108.3       | 109.32 | 1.02          | 0.67                             | 48.41       | Minto Stockwork                   |
| SD-17-131  | 109.32      | 110.3  | 0.98          |                                  | 33.7        | Minto Stockwork                   |
| SD-17-131  | 244.21      | 245.3  | 1.09          | 0.72                             | 35.1        | Minto Mine Shear Zone             |
| SD-17-135  | 81.65       | 82.57  | 0.92          |                                  | 6.98        | Minto Stockwork                   |
| SD-17-139  | 230.08      | 230.7  | 0.62          | 0.51                             | 5.69        | Jubilee Shear Zone                |
| SD-17-140  | 78          | 79     | 1             |                                  | 5.5         | Minto Stockwork                   |
| SD-17-140  | 136         | 136.94 | 0.94          |                                  | 4.71        | Minto Stockwork                   |
| SD-17-142  | 189.7       | 190.5  | 0.8           | 0.67                             | 3.41        | Jubilee Shear Zone                |
| SD-17-145  | 193.5       | 194.5  | 1             |                                  | 14.7        | Minto Stockwork                   |
| SD-17-146  | 211         | 211.9  | 0.9           | 0.69                             | 3.04        | Jubilee Shear Zone                |
| SD-17-150  | 240.44      | 241.44 | 1             | 0.6                              | 3.93        | Jubilee Shear Zone                |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                 |
|-----------|-------------|--------|---------------|----------------------------------|-------------|---------------------------|
| SD-17-150 | 252.13      | 253.2  | 1.07          | 0.64                             | 2.99        | Jubilee Shear Zone        |
| SD-17-150 | 255.2       | 256.2  | 1             | 0.6                              | 4.41        | Jubilee Shear Zone        |
| SD-17-151 | 147.06      | 148    | 0.94          | 0.75                             | 8.59        | Minto Mine Shear Zone     |
| SD-17-153 | 353.8       | 354.82 | 1.02          | 0.54                             | 7.76        | Jubilee Shear Zone        |
| SD-17-153 | 357.38      | 358.2  | 0.82          | 0.44                             | 5.73        | Jubilee Shear Zone        |
| SD-17-157 | 221.6       | 222.53 | 0.93          | 0.55                             | 4.13        | Jubilee Shear Zone        |
| SD-17-157 | 240.7       | 241.7  | 1             | 0.6                              | 5.36        | Jubilee Shear Zone        |
| SD-17-157 | 244.75      | 245.73 | 0.98          | 0.58                             | 3.57        | Jubilee Shear Zone        |
| SD-17-158 | 155.2       | 155.92 | 0.72          | 0.58                             | 7.36        | Jubilee Shear Zone        |
| SD-17-159 | 157         | 158.5  | 1.5           |                                  | 3.54        | Minto Stockwork           |
| SD-17-159 | 168.86      | 169.7  | 0.84          |                                  | 3.02        | Minto Stockwork           |
| SD-17-160 | 182.93      | 183.8  | 0.87          | 0.81                             | 4.31        | Jubilee Shear Zone        |
| SD-17-162 | 177.55      | 179.05 | 1.5           |                                  | 3.12        | Minto Stockwork           |
| SD-17-162 | 203.8       | 204.5  | 0.7           | 0.43                             | 4.17        | Minto Mine Shear Zone     |
| SD-17-162 | 204.5       | 205.25 | 0.75          | 0.46                             | 3.44        | Minto Mine Shear Zone     |
| SD-17-162 | 211.35      | 212.33 | 0.98          | 0.6                              | 4.05        | Minto Mine Shear Zone     |
| SD-17-163 | 56.8        | 57.8   | 1             |                                  | 12.8        | Jubilee Mine Vein Network |
| SD-17-163 | 117.28      | 118    | 0.72          | 0.44                             | 5.95        | Jubilee Shear Zone        |
| SD-17-163 | 119.3       | 120.15 | 0.85          | 0.51                             | 10.3        | Jubilee Shear Zone        |
| SD-17-163 | 150.16      | 151.14 | 0.98          | 0.59                             | 4.09        | Jubilee Shear Zone        |
| SD-17-163 | 177         | 178    | 1             | 0.6                              | 2.76        | Jubilee Shear Zone        |
| SD-17-164 | 222.5       | 223.5  | 1             | 0.57                             | 6.12        | Minto Mine Shear Zone     |
| SD-17-164 | 237.6       | 238.3  | 0.7           | 0.4                              | 3.7         | Minto Mine Shear Zone     |
| SD-17-167 | 82          | 82.84  | 0.84          | 0.83                             | 7.64        | Jubilee Shear Zone        |
| SD-17-167 | 455.17      | 455.96 | 0.79          |                                  | 3           | Shear Zone                |
| SD-17-169 | 187.4       | 188.4  | 1             | 0.66                             | 5.39        | Minto Mine Shear Zone     |
| SD-17-170 | 89.2        | 90.25  | 1.05          | 0.43                             | 3.24        | Jubilee Shear Zone        |
| SD-17-170 | 92          | 93     | 1             | 0.41                             | 3.89        | Jubilee Shear Zone        |
| SD-17-170 | 96          | 97     | 1             | 0.41                             | 11.4        | Jubilee Shear Zone        |
| SD-17-170 | 111.9       | 112.73 | 0.83          | 0.34                             | 14.8        | Jubilee Shear Zone        |
| SD-17-170 | 112.73      | 113.56 | 0.83          | 0.34                             | 10.9        | Jubilee Shear Zone        |
| SD-17-170 | 114.75      | 115.77 | 1.02          | 0.42                             | 3.24        | Jubilee Shear Zone        |
| SD-17-170 | 244.95      | 246.25 | 1.3           |                                  | 7.77        | Jubilee Mine Vein Network |
| SD-17-171 | 200.38      | 201.39 | 1.01          | 0.61                             | 15.48       | Minto Mine Shear Zone     |
| SD-17-171 | 201.39      | 202.3  | 0.91          | 0.55                             | 14.26       | Minto Mine Shear Zone     |
| SD-17-172 | 72.6        | 73.6   | 1             | 0.53                             | 10.7        | Jubilee Shear Zone        |
| SD-17-172 | 75.6        | 76.6   | 1             | 0.53                             | 4.59        | Jubilee Shear Zone        |
| SD-17-172 | 77.6        | 78.65  | 1.05          | 0.55                             | 10.2        | Jubilee Shear Zone        |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                      |
|------------|-------------|--------|---------------|----------------------------------|-------------|--------------------------------|
| SD-17-172  | 78.65       | 79.56  | 0.91          | 0.48                             | 3.47        | Jubilee Shear Zone             |
| SD-17-172  | 79.56       | 80.6   | 1.04          | 0.55                             | 7.73        | Jubilee Shear Zone             |
| SD-17-172  | 86.52       | 87.59  | 1.07          | 0.56                             | 2.9         | Jubilee Shear Zone             |
| SD-17-172  | 90.57       | 91.59  | 1.02          | 0.54                             | 40.2        | Jubilee Shear Zone             |
| SD-17-172  | 118.83      | 119.91 | 1.08          | 0.57                             | 13.6        | Jubilee Shear Zone             |
| SD-17-172  | 148.53      | 149.5  | 0.97          | 0.51                             | 21.1        | Jubilee Shear Zone             |
| SD-17-173  | 44.5        | 45.53  | 1.03          | 1.02                             | 28.63       | Jubilee Shear Zone             |
| SD-17-173  | 48.36       | 49.25  | 0.89          | 0.88                             | 12.94       | Jubilee Shear Zone             |
| SD-17-173  | 49.25       | 50.1   | 0.85          | 0.84                             | 8.68        | Jubilee Shear Zone             |
| SD-17-173  | 50.75       | 51.4   | 0.65          | 0.64                             | 12.58       | Jubilee Shear Zone             |
| SD-17-173  | 55.4        | 56.4   | 1             | 0.99                             | 12.01       | Jubilee Shear Zone             |
| SD-17-173  | 58.4        | 59.29  | 0.89          | 0.88                             | 2.85        | Jubilee Shear Zone             |
| SD-17-173  | 78.08       | 79.09  | 1.01          | 1                                | 4.88        | Jubilee Shear Zone             |
| SD-17-174  | 193.6       | 194.36 | 0.76          | 0.49                             | 17.48       | Minto Mine Shear Zone          |
| SD-17-174  | 194.36      | 195.27 | 0.91          | 0.59                             | 21.34       | Minto Mine Shear Zone          |
| SD-17-174  | 195.27      | 196.18 | 0.91          | 0.59                             | 3.29        | Minto Mine Shear Zone          |
| SD-17-174  | 196.18      | 197.09 | 0.91          | 0.59                             | 4.65        | Minto Mine Shear Zone          |
| SD-17-174  | 197.09      | 198    | 0.91          | 0.59                             | 4.96        | Minto Mine Shear Zone          |
| SD-17-174  | 198         | 198.91 | 0.91          | 0.59                             | 8.94        | Minto Mine Shear Zone          |
| SD-17-174  | 198.91      | 199.82 | 0.91          | 0.59                             | 5.92        | Minto Mine Shear Zone          |
| SD-17-175  | 218.7       | 219.7  | 1             | 0.6                              | 7.03        | Minto Mine Shear Zone          |
| SD-17-176  | 73.4        | 74.53  | 1.13          | 0.7                              | 4.84        | Jubilee Shear Zone             |
| SD-17-176  | 78.8        | 79.6   | 0.8           | 0.5                              | 13.4        | Jubilee Shear Zone             |
| SD-17-176  | 84.2        | 85.12  | 0.92          | 0.57                             | 4.61        | Jubilee Shear Zone             |
| SD-17-176  | 85.12       | 86     | 0.88          | 0.55                             | 3.08        | Jubilee Shear Zone             |
| SD-18-178  | 131.09      | 132.1  | 1.01          |                                  | 7.05        | Wawa Gold Corridor – Intrusion |
| SD-18-178  | 224.92      | 226    | 1.08          |                                  | 13          | Wawa Gold Corridor – Intrusion |
| SD-18-181A | 203.85      | 204.83 | 0.98          | 0.57                             | 2.85        | Minto Mine Shear Zone          |
| SD-18-181A | 204.83      | 205.82 | 0.99          | 0.58                             | 5.77        | Minto Mine Shear Zone          |
| RV-18-182  | 232.96      | 233.75 | 0.79          | 0.78                             | 25.6        | Hornblende Shear Zone          |
| SD-18-188  | 230.25      | 231    | 0.75          | 0.59                             | 5.34        | Minto Mine Shear Zone          |
| SD-18-188  | 231         | 232    | 1             | 0.78                             | 3.04        | Minto Mine Shear Zone          |
| SD-18-188  | 235.94      | 236.9  | 0.96          | 0.75                             | 3.71        | Minto Mine Shear Zone          |
| SD-18-189  | 107         | 107.98 | 0.98          |                                  | 16.81       | Minto Stockwork                |
| SD-18-189  | 125.58      | 126.58 | 1             |                                  | 15.52       | Minto Stockwork                |
| SD-18-189  | 149.3       | 150.05 | 0.75          |                                  | 8.93        | Minto Stockwork                |
| SD-18-189  | 199.18      | 200    | 0.82          |                                  | 3.28        | Minto Stockwork                |
| SD-18-189  | 223         | 223.9  | 0.9           |                                  | 4.31        | Minto Stockwork                |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone              |
|-----------|-------------|--------|---------------|----------------------------------|-------------|------------------------|
| PH-18-190 | 204         | 205    | 1             |                                  | 6.06        | Parkhill #4 Shear Zone |
| SD-18-192 | 248.65      | 249.44 | 0.79          | 0.44                             | 19.41       | Minto Mine Shear Zone  |
| SD-18-193 | 256.89      | 257.63 | 0.74          | 0.56                             | 4.42        | Minto Mine Shear Zone  |
| SD-18-194 | 272.74      | 273.53 | 0.79          | 0.58                             | 6.7         | Minto Mine Shear Zone  |
| SD-18-195 | 46.6        | 47.6   | 1             |                                  | 3.19        | Minto Stockwork        |
| SD-18-195 | 134.14      | 134.98 | 0.84          | 0.61                             | 16.51       | Minto Mine South       |
| SD-18-195 | 134.98      | 135.83 | 0.85          | 0.62                             | 12.29       | Minto Mine Shear Zone  |
| SD-18-196 | 83          | 84     | 1             |                                  | 3.9         | Minto Stockwork        |
| SD-18-196 | 100.48      | 101.38 | 0.9           | 0.89                             | 5.85        | Minto Mine Shear Zone  |
| SD-18-196 | 102.15      | 103.25 | 1.1           | 1.08                             | 10.3        | Minto Mine Shear Zone  |
| SD-18-201 | 122.68      | 123.4  | 0.72          | 0.54                             | 3.78        | Minto Mine Shear Zone  |
| SD-18-203 | 191.77      | 192.7  | 0.93          | 0.9                              | 4.9         | Minto Mine Shear Zone  |
| SD-18-206 | 302.52      | 303.6  | 1.08          | 0.76                             | 4           | Minto Mine Shear Zone  |
| SD-18-207 | 289.71      | 290.42 | 0.71          | 0.48                             | 5.42        | Minto Mine Shear Zone  |
| SD-18-212 | 262         | 263    | 1             |                                  | 5.28        | Parkhill #4 Shear Zone |
| SD-18-212 | 276.2       | 276.75 | 0.55          |                                  | 13.6        | Parkhill #4 Shear Zone |
| SD-18-213 | 90.25       | 91     | 0.75          |                                  | 4.69        | Shear Zone             |
| SD-18-213 | 184.45      | 185.5  | 1.05          |                                  | 6.76        | Shear Zone             |
| SD-18-213 | 258.3       | 258.88 | 0.58          |                                  | 16.3        | Parkhill #4 Shear Zone |
| SD-18-217 | 308.2       | 309    | 0.8           | 0.5                              | 4.75        | Minto Mine Shear Zone  |
| SD-18-218 | 321         | 321.9  | 0.9           | 0.51                             | 3.29        | Minto Mine Shear Zone  |
| SD-18-219 | 91.45       | 92.52  | 1.07          |                                  | 19.8        | Minto Stockwork        |
| SD-18-219 | 239.44      | 240.47 | 1.03          |                                  | 4.54        | Minto Stockwork        |
| SD-18-219 | 253.7       | 254.6  | 0.9           | 0.69                             | 3.33        | Minto Mine Shear Zone  |
| SD-18-220 | 206.75      | 207.36 | 0.61          |                                  | 3.92        | Minto Stockwork        |
| SD-18-221 | 227.2       | 227.94 | 0.74          | 0.63                             | 3.57        | Minto Mine Shear Zone  |
| SD-18-222 | 246         | 247    | 1             |                                  | 7           | Minto Stockwork        |
| SD-18-222 | 252.5       | 253.2  | 0.7           | 0.5                              | 3.31        | Minto Mine Shear Zone  |
| SD-18-222 | 257.88      | 258.6  | 0.72          | 0.52                             | 46.5        | Minto Mine Shear Zone  |
| SD-18-222 | 283         | 284    | 1             |                                  | 4.5         | Minto Stockwork        |
| SD-18-223 | 156.9       | 158.02 | 1.12          | 1.11                             | 13.4        | Minto Mine Shear Zone  |
| SD-18-223 | 167.12      | 168.13 | 1.01          | 1                                | 6.14        | Minto Mine Shear Zone  |
| SD-18-223 | 168.13      | 169    | 0.87          | 0.86                             | 7.94        | Minto Mine Shear Zone  |
| SD-18-223 | 169         | 169.98 | 0.98          | 0.97                             | 16          | Minto Mine Shear Zone  |
| SD-18-223 | 170.78      | 171.84 | 1.06          | 1.05                             | 4.31        | Minto Mine Shear Zone  |
| SD-18-225 | 200.31      | 201.24 | 0.93          |                                  | 3.62        | Minto Stockwork        |
| SD-18-225 | 232.41      | 233.4  | 0.99          |                                  | 19.6        | Minto Stockwork        |
| SD-18-226 | 250.92      | 251.92 | 1             | 0.83                             | 3.56        | Minto Mine Shear Zone  |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone          |
|-----------|-------------|--------|---------------|----------------------------------|-------------|--------------------|
| SD-18-228 | 257         | 257.95 | 0.95          | 0.93                             | 2.71        | Jubilee Shear Zone |
| SD-18-228 | 257.95      | 259    | 1.05          | 1.03                             | 4.91        | Jubilee Shear Zone |
| SD-18-228 | 262         | 263    | 1             | 0.98                             | 19.7        | Jubilee Shear Zone |
| SD-18-228 | 267.5       | 268.5  | 1             | 0.98                             | 3.38        | Jubilee Shear Zone |
| SD-18-228 | 268.5       | 269    | 0.5           | 0.49                             | 33.7        | Jubilee Shear Zone |
| SD-18-228 | 272         | 273    | 1             | 0.98                             | 6.67        | Jubilee Shear Zone |
| SD-18-228 | 273         | 274    | 1             | 0.98                             | 9.62        | Jubilee Shear Zone |
| SD-18-228 | 279         | 280    | 1             | 0.98                             | 24.2        | Jubilee Shear Zone |
| SD-18-228 | 281         | 282    | 1             | 0.98                             | 3.78        | Jubilee Shear Zone |
| SD-18-228 | 284         | 285    | 1             | 0.98                             | 4.37        | Jubilee Shear Zone |
| SD-18-229 | 262.64      | 263.64 | 1             | 0.97                             | 4.91        | Jubilee Shear Zone |
| SD-18-229 | 263.64      | 264.63 | 0.99          | 0.96                             | 3.54        | Jubilee Shear Zone |
| SD-18-229 | 264.63      | 265.63 | 1             | 0.97                             | 4.28        | Jubilee Shear Zone |
| SD-18-229 | 265.63      | 266.73 | 1.1           | 1.06                             | 4.39        | Jubilee Shear Zone |
| SD-18-229 | 266.73      | 267.53 | 0.8           | 0.77                             | 3.45        | Jubilee Shear Zone |
| SD-18-229 | 269.6       | 270.63 | 1.03          | 1                                | 7.91        | Jubilee Shear Zone |
| SD-18-229 | 270.63      | 271.63 | 1             | 0.97                             | 16.3        | Jubilee Shear Zone |
| SD-18-229 | 271.63      | 272.66 | 1.03          | 1                                | 2.82        | Jubilee Shear Zone |
| SD-18-229 | 272.66      | 273.62 | 0.96          | 0.93                             | 6.81        | Jubilee Shear Zone |
| SD-18-229 | 274.3       | 275.4  | 1.1           | 1.06                             | 6.77        | Jubilee Shear Zone |
| SD-18-229 | 275.4       | 276.39 | 0.99          | 0.96                             | 3.75        | Jubilee Shear Zone |
| SD-18-229 | 281.56      | 282.75 | 1.19          | 1.15                             | 9.52        | Jubilee Shear Zone |
| SD-18-230 | 272.95      | 273.9  | 0.95          | 0.88                             | 7.6         | Jubilee Shear Zone |
| SD-18-230 | 273.9       | 274.58 | 0.68          | 0.63                             | 3.93        | Jubilee Shear Zone |
| SD-18-230 | 288.42      | 289.4  | 0.98          | 0.91                             | 3.92        | Jubilee Shear Zone |
| SD-18-230 | 289.4       | 290.28 | 0.88          | 0.82                             | 3.63        | Jubilee Shear Zone |
| SD-18-231 | 289.1       | 290.1  | 1             | 0.91                             | 8.38        | Jubilee Shear Zone |
| SD-18-231 | 290.1       | 291.11 | 1.01          | 0.92                             | 5.24        | Jubilee Shear Zone |
| SD-18-231 | 294.26      | 295.18 | 0.92          | 0.84                             | 5.67        | Jubilee Shear Zone |
| SD-18-232 | 312.85      | 314    | 1.15          | 1                                | 3.33        | Jubilee Shear Zone |
| SD-18-233 | 83.3        | 84.25  | 0.95          |                                  | 8.01        | Shear Zone         |
| SD-18-233 | 311.5       | 312.35 | 0.85          |                                  | 16.03       | Jubilee Shear Zone |
| SD-18-233 | 312.35      | 313.2  | 0.85          |                                  | 12.9        | Jubilee Shear Zone |
| SD-18-233 | 313.2       | 314    | 0.8           |                                  | 14.21       | Jubilee Shear Zone |
| SD-18-233 | 314         | 314.91 | 0.91          |                                  | 7.94        | Jubilee Shear Zone |
| SD-18-234 | 272.77      | 273.7  | 0.93          | 0.91                             | 23.6        | Jubilee Shear Zone |
| SD-18-234 | 273.7       | 274.7  | 1             | 0.98                             | 60.22       | Jubilee Shear Zone |
| SD-18-234 | 274.7       | 275.68 | 0.98          | 0.96                             | 14.58       | Jubilee Shear Zone |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone          |
|-----------|-------------|--------|---------------|----------------------------------|-------------|--------------------|
| SD-18-234 | 280         | 280.77 | 0.77          | 0.75                             | 3.53        | Jubilee Shear Zone |
| SD-18-235 | 288.14      | 289.07 | 0.93          | 0.87                             | 4.38        | Jubilee Shear Zone |
| SD-18-235 | 290         | 290.57 | 0.57          | 0.53                             | 9.48        | Jubilee Shear Zone |
| SD-18-235 | 290.57      | 291.43 | 0.86          | 0.8                              | 14.7        | Jubilee Shear Zone |
| SD-18-235 | 291.43      | 292.38 | 0.95          | 0.88                             | 12.2        | Jubilee Shear Zone |
| SD-18-235 | 294.06      | 295    | 0.94          | 0.87                             | 3.55        | Jubilee Shear Zone |
| SD-18-235 | 298.79      | 299.4  | 0.61          | 0.57                             | 12.1        | Jubilee Shear Zone |
| SD-18-235 | 303.58      | 304.3  | 0.72          | 0.67                             | 2.73        | Jubilee Shear Zone |
| SD-18-235 | 309.41      | 310.37 | 0.96          | 0.89                             | 8.22        | Jubilee Shear Zone |
| SD-18-236 | 318.68      | 319.54 | 0.86          | 0.72                             | 12.08       | Jubilee Shear Zone |
| SD-18-236 | 319.54      | 320.54 | 1             | 0.84                             | 2.79        | Jubilee Shear Zone |
| SD-18-236 | 320.54      | 321.54 | 1             | 0.84                             | 9.1         | Jubilee Shear Zone |
| SD-18-236 | 321.54      | 322.54 | 1             | 0.84                             | 4.88        | Jubilee Shear Zone |
| SD-18-236 | 322.54      | 323.54 | 1             | 0.84                             | 4.45        | Jubilee Shear Zone |
| SD-18-236 | 328.65      | 329.55 | 0.9           | 0.76                             | 2.73        | Jubilee Shear Zone |
| SD-18-237 | 278.8       | 279.8  | 1             | 0.93                             | 15.4        | Jubilee Shear Zone |
| SD-18-238 | 177.3       | 178.3  | 1             | 0.87                             | 7.83        | Jubilee Shear Zone |
| SD-18-238 | 178.3       | 179.3  | 1             | 0.87                             | 11.9        | Jubilee Shear Zone |
| SD-18-238 | 179.3       | 180.33 | 1.03          | 0.9                              | 16.13       | Jubilee Shear Zone |
| SD-18-238 | 180.33      | 181.34 | 1.01          | 0.88                             | 15.62       | Jubilee Shear Zone |
| SD-18-238 | 181.34      | 182.35 | 1.01          | 0.88                             | 8.74        | Jubilee Shear Zone |
| SD-18-238 | 207.75      | 208.7  | 0.95          | 0.83                             | 10.8        | Jubilee Shear Zone |
| SD-18-239 | 174.64      | 175.6  | 0.96          | 0.9                              | 3.34        | Jubilee Shear Zone |
| SD-18-239 | 194         | 195    | 1             | 0.94                             | 3.25        | Jubilee Shear Zone |
| SD-18-239 | 224.38      | 225.4  | 1.02          | 0.96                             | 3.67        | Jubilee Shear Zone |
| SD-18-240 | 143.7       | 144.7  | 1             | 0.9                              | 4.6         | Jubilee Shear Zone |
| SD-18-240 | 144.7       | 145.7  | 1             | 0.9                              | 3.67        | Jubilee Shear Zone |
| SD-18-240 | 146.7       | 147.7  | 1             | 0.9                              | 4.24        | Jubilee Shear Zone |
| SD-18-240 | 149.7       | 150.7  | 1             | 0.9                              | 5.14        | Jubilee Shear Zone |
| SD-18-240 | 202.37      | 203.3  | 0.93          | 0.84                             | 5.88        | Jubilee Shear Zone |
| SD-18-241 | 148.57      | 149.47 | 0.9           | 0.78                             | 3.14        | Jubilee Shear Zone |
| SD-18-241 | 149.47      | 150.5  | 1.03          | 0.9                              | 12.37       | Jubilee Shear Zone |
| SD-18-241 | 150.5       | 151.3  | 0.8           | 0.7                              | 7.63        | Jubilee Shear Zone |
| SD-18-241 | 151.3       | 151.85 | 0.55          | 0.48                             | 17.39       | Jubilee Shear Zone |
| SD-18-241 | 151.85      | 152.5  | 0.65          | 0.57                             | 32.91       | Jubilee Shear Zone |
| SD-18-241 | 152.5       | 153.11 | 0.61          | 0.53                             | 4.93        | Jubilee Shear Zone |
| SD-18-241 | 153.11      | 154    | 0.89          | 0.78                             | 6.96        | Jubilee Shear Zone |
| SD-18-241 | 154         | 155    | 1             | 0.87                             | 3.99        | Jubilee Shear Zone |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone          |
|------------|-------------|--------|---------------|----------------------------------|-------------|--------------------|
| SD-18-241  | 155         | 156.05 | 1.05          | 0.91                             | 5.24        | Jubilee Shear Zone |
| SD-18-241  | 157.6       | 158.38 | 0.78          | 0.68                             | 6.35        | Jubilee Shear Zone |
| SD-18-241  | 162         | 162.61 | 0.61          | 0.53                             | 8.36        | Jubilee Shear Zone |
| SD-18-241  | 166.45      | 167.45 | 1             | 0.87                             | 4.54        | Jubilee Shear Zone |
| SD-18-243A | 205.96      | 207.01 | 1.05          | 0.74                             | 72.1        | Jubilee Shear Zone |
| SD-18-243A | 207.01      | 208    | 0.99          | 0.7                              | 34.1        | Jubilee Shear Zone |
| SD-18-243A | 208         | 208.77 | 0.77          | 0.54                             | 16.5        | Jubilee Shear Zone |
| SD-18-243A | 211.33      | 212.17 | 0.84          | 0.59                             | 3.1         | Jubilee Shear Zone |
| SD-18-243A | 212.17      | 212.68 | 0.51          | 0.36                             | 6.52        | Jubilee Shear Zone |
| SD-18-243A | 212.68      | 213.37 | 0.69          | 0.49                             | 9.5         | Jubilee Shear Zone |
| SD-18-243A | 213.37      | 214.25 | 0.88          | 0.62                             | 6.04        | Jubilee Shear Zone |
| SD-18-243A | 219.38      | 220.4  | 1.02          | 0.72                             | 9.21        | Jubilee Shear Zone |
| SD-18-243A | 220.4       | 221.41 | 1.01          | 0.71                             | 3.91        | Jubilee Shear Zone |
| SD-18-243A | 230.71      | 231.67 | 0.96          | 0.68                             | 11.2        | Jubilee Shear Zone |
| SD-18-244  | 174.34      | 175.16 | 0.82          | 0.66                             | 6.72        | Jubilee Shear Zone |
| SD-18-244  | 175.16      | 176    | 0.84          | 0.68                             | 10.7        | Jubilee Shear Zone |
| SD-18-244  | 176         | 177.14 | 1.14          | 0.92                             | 7.11        | Jubilee Shear Zone |
| SD-18-244  | 177.14      | 178.11 | 0.97          | 0.78                             | 3.39        | Jubilee Shear Zone |
| SD-18-244  | 179.17      | 180.22 | 1.05          | 0.85                             | 5.91        | Jubilee Shear Zone |
| SD-18-244  | 191.05      | 192    | 0.95          | 0.77                             | 3.67        | Jubilee Shear Zone |
| SD-18-245  | 103.46      | 104.49 | 1.03          | 0.99                             | 4.3         | Jubilee Shear Zone |
| SD-18-247  | 91.85       | 92.98  | 1.13          | 0.24                             | 8.75        | Minto B Shear Zone |
| SD-18-247  | 115.87      | 116.77 | 0.9           | 0.19                             | 4.4         | Minto B Shear Zone |
| SD-18-247  | 120.5       | 121.5  | 1             | 0.21                             | 5.47        | Minto B Shear Zone |
| SD-18-247  | 121.5       | 122.5  | 1             | 0.21                             | 4.71        | Minto B Shear Zone |
| SD-18-247  | 127.5       | 128.5  | 1             | 0.21                             | 10.1        | Minto B Shear Zone |
| SD-18-247  | 128.5       | 129.52 | 1.02          | 0.22                             | 9.39        | Minto B Shear Zone |
| SD-18-248  | 103.83      | 104.66 | 0.83          | 0.65                             | 15.7        | Jubilee Shear Zone |
| SD-18-248  | 104.66      | 105.45 | 0.79          | 0.62                             | 8.64        | Jubilee Shear Zone |
| SD-18-248  | 105.45      | 106.28 | 0.83          | 0.65                             | 4.21        | Jubilee Shear Zone |
| SD-18-248  | 115.1       | 116.14 | 1.04          | 0.82                             | 5.48        | Jubilee Shear Zone |
| SD-18-248  | 121.18      | 122.17 | 0.99          | 0.78                             | 5.39        | Jubilee Shear Zone |
| SD-18-248  | 123.84      | 124.83 | 0.99          | 0.78                             | 5.57        | Jubilee Shear Zone |
| SD-18-248  | 124.83      | 125.67 | 0.84          | 0.66                             | 4.61        | Jubilee Shear Zone |
| SD-18-249  | 198.54      | 199.57 | 1.03          | 0.85                             | 3.39        | Jubilee Shear Zone |
| SD-18-250  | 359.82      | 360.82 | 1             | 0.92                             | 2.79        | Jubilee Shear Zone |
| SD-18-250  | 360.82      | 361.53 | 0.71          | 0.65                             | 2.78        | Jubilee Shear Zone |
| SD-18-251  | 173.28      | 174.16 | 0.88          | 0.84                             | 7.99        | Jubilee Shear Zone |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                      |
|-----------|-------------|--------|---------------|----------------------------------|-------------|--------------------------------|
| SD-18-251 | 175.06      | 176.18 | 1.12          | 1.06                             | 3.46        | Jubilee Shear Zone             |
| SD-18-252 | 171.28      | 172.07 | 0.79          | 0.73                             | 3.31        | Jubilee Shear Zone             |
| SD-18-253 | 302.18      | 303.07 | 0.89          | 0.72                             | 12.8        | Jubilee Shear Zone             |
| SD-18-253 | 359.85      | 360.85 | 1             | 0.81                             | 3.93        | Jubilee Shear Zone             |
| SD-18-253 | 360.85      | 361.73 | 0.88          | 0.72                             | 3.43        | Jubilee Shear Zone             |
| SD-18-254 | 168.93      | 169.97 | 1.04          | 1.03                             | 6.02        | Jubilee Shear Zone             |
| SD-18-254 | 174.15      | 175.17 | 1.02          | 1.01                             | 3.3         | Jubilee Shear Zone             |
| SD-18-255 | 189.79      | 190.41 | 0.62          | 0.56                             | 11.3        | Jubilee Shear Zone             |
| SD-18-255 | 190.41      | 191.2  | 0.79          | 0.71                             | 98.6        | Jubilee Shear Zone             |
| SD-18-255 | 191.2       | 191.94 | 0.74          | 0.67                             | 68.1        | Jubilee Shear Zone             |
| SD-18-255 | 191.94      | 192.8  | 0.86          | 0.78                             | 3.97        | Jubilee Shear Zone             |
| SD-18-256 | 105         | 106    | 1             |                                  | 7.91        | Shear Zone                     |
| SD-18-256 | 106         | 107.16 | 1.16          |                                  | 10.3        | Shear Zone                     |
| SD-18-256 | 247.22      | 248.33 | 1.11          |                                  | 3.92        | Minto B Shear Zone             |
| SD-18-256 | 248.33      | 249.43 | 1.1           |                                  | 6.9         | Minto B Shear Zone             |
| SD-18-256 | 250.62      | 251.67 | 1.05          |                                  | 3.11        | Minto B Shear Zone             |
| SD-18-258 | 240.9       | 241.96 | 1.06          | 0.97                             | 5.93        | Jubilee Shear Zone             |
| SD-18-258 | 246.84      | 247.53 | 0.69          | 0.63                             | 3.77        | Jubilee Shear Zone             |
| SD-18-258 | 247.53      | 248.21 | 0.68          | 0.62                             | 10.03       | Jubilee Shear Zone             |
| SD-18-258 | 249.17      | 250.18 | 1.01          | 0.93                             | 7.75        | Jubilee Shear Zone             |
| SD-18-258 | 257.88      | 259    | 1.12          | 1.03                             | 4.5         | Jubilee Shear Zone             |
| SD-18-258 | 263.13      | 263.82 | 0.69          | 0.63                             | 5.03        | Jubilee Shear Zone             |
| SD-18-258 | 263.82      | 264.83 | 1.01          | 0.93                             | 3.94        | Jubilee Shear Zone             |
| SD-18-258 | 264.83      | 265.88 | 1.05          | 0.96                             | 8.49        | Jubilee Shear Zone             |
| SD-18-258 | 265.88      | 266.91 | 1.03          | 0.94                             | 8.25        | Jubilee Shear Zone             |
| SD-18-258 | 268.79      | 269.79 | 1             | 0.92                             | 4.32        | Jubilee Shear Zone             |
| SD-18-259 | 75.13       | 76.05  | 0.92          |                                  | 14.7        | Shear Zone                     |
| SD-18-259 | 316.26      | 317.3  | 1.04          |                                  | 3.38        | Jubilee Shear Zone             |
| SD-18-259 | 334.4       | 335.04 | 0.64          |                                  | 4.2         | Jubilee Shear Zone             |
| SD-18-261 | 288.7       | 289.7  | 1             | 0.88                             | 3.17        | Jubilee Shear Zone             |
| SD-18-261 | 307.33      | 308.3  | 0.97          | 0.85                             | 7.38        | Jubilee Shear Zone             |
| SD-18-264 | 52          | 53     | 1             | 1                                | 3.13        | Jubilee Shear Zone             |
| SD-18-264 | 178.5       | 179.13 | 0.63          |                                  | 4.52        | Wawa Gold Corridor – Intrusion |
| SD-18-264 | 179.13      | 179.67 | 0.54          |                                  | 7.55        | Wawa Gold Corridor – Intrusion |
| SD-19-276 | 262.45      | 263.21 | 0.76          | 0.75                             | 2.79        | Wawa Gold Corridor – Intrusion |
| SD-19-276 | 289         | 290    | 1             | 0.98                             | 3.13        | Wawa Gold Corridor – Intrusion |
| SD-19-276 | 290         | 290.88 | 0.88          | 0.86                             | 4.51        | Wawa Gold Corridor – Intrusion |
| SD-19-277 | 80.48       | 81.5   | 1.02          |                                  | 3.63        | Wawa Gold Corridor – Intrusion |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                          |
|------------|-------------|--------|---------------|----------------------------------|-------------|------------------------------------|
| SD-19-277  | 87.55       | 88.55  | 1             |                                  | 6.74        | Wawa Gold Corridor – Intrusion     |
| SD-19-277  | 89.39       | 90.32  | 0.93          |                                  | 5.75        | Wawa Gold Corridor – Intrusion     |
| SD-19-277  | 124.35      | 125.23 | 0.88          |                                  | 4.7         | Wawa Gold Corridor – Intrusion     |
| SD-19-277  | 218.2       | 219.1  | 0.9           | 0.88                             | 6.09        | Wawa Gold Corridor – Intrusion     |
| SD-19-277  | 219.1       | 220    | 0.9           | 0.88                             | 4.16        | Wawa Gold Corridor – Intrusion     |
| SD-19-280  | 56.52       | 57.37  | 0.85          | 0.83                             | 3.93        | Jubilee Shear Zone                 |
| SD-19-280  | 61.94       | 62.65  | 0.71          | 0.69                             | 3.16        | Jubilee Shear Zone                 |
| SD-19-282  | 33.32       | 34.32  | 1             |                                  | 4.7         | Shear Zone                         |
| SD-19-282  | 243.2       | 244.2  | 1             |                                  | 3           | Minto B Shear Zone                 |
| SD-19-282  | 257.68      | 258.4  | 0.72          |                                  | 6.89        | Minto B Shear Zone                 |
| SD-19-282  | 313         | 314    | 1             | 0.87                             | 5.21        | Jubilee Shear Zone                 |
| SD-19-283  | 152.46      | 152.98 | 0.52          |                                  | 8.06        | Shear Zone                         |
| SD-19-283  | 152.98      | 153.51 | 0.53          |                                  | 9.67        | Shear Zone                         |
| SD-19-283  | 154.96      | 155.61 | 0.65          |                                  | 12.38       | Shear Zone                         |
| SD-20-285A | 444         | 444.66 | 0.66          | 0.62                             | 5.69        | Jubilee Shear Zone – Surluga South |
| SD-20-286  | 541         | 541.95 | 0.95          | 0.88                             | 5.22        | Jubilee Shear Zone – Surluga South |
| SD-20-286  | 556.07      | 557.21 | 1.14          | 1.05                             | 5.54        | Jubilee Shear Zone – Surluga South |
| SD-20-286  | 566.35      | 567.35 | 1             | 0.92                             | 3.42        | Jubilee Shear Zone – Surluga South |
| SD-20-287  | 205.38      | 206.42 | 1.04          | 1                                | 3.46        | Shear Zone                         |
| SD-20-287  | 457.46      | 458.44 | 0.98          | 0.95                             | 4.1         | Jubilee Shear Zone – Surluga South |
| SD-20-289  | 568.35      | 569.54 | 1.19          | 1.07                             | 15.7        | Jubilee Shear Zone – Surluga South |
| SD-20-289  | 571         | 572.01 | 1.01          | 0.91                             | 12.5        | Jubilee Shear Zone – Surluga South |
| SD-20-291  | 546.45      | 547.63 | 1.18          | 1.05                             | 3.67        | Jubilee Shear Zone – Surluga South |
| SD-20-291  | 547.63      | 548.6  | 0.97          | 0.87                             | 7.45        | Jubilee Shear Zone – Surluga South |
| SD-20-291  | 554.77      | 555.93 | 1.16          | 1.03                             | 3.46        | Jubilee Shear Zone – Surluga South |
| SD-20-291  | 559.09      | 560.12 | 1.03          | 0.92                             | 3.25        | Jubilee Shear Zone – Surluga South |
| SD-20-292  | 507.78      | 508.79 | 1.01          | 0.88                             | 17.32       | Jubilee Shear Zone – Surluga South |
| SD-20-292  | 520.57      | 521.54 | 0.97          | 0.84                             | 14.72       | Jubilee Shear Zone – Surluga South |
| SD-20-293  | 554.44      | 555.53 | 1.09          | 0.94                             | 6.92        | Jubilee Shear Zone – Surluga South |
| SD-20-293  | 565         | 565.9  | 0.9           | 0.78                             | 17.1        | Jubilee Shear Zone – Surluga South |
| SD-20-293  | 565.9       | 566.91 | 1.01          | 0.87                             | 13.71       | Jubilee Shear Zone – Surluga South |
| SD-21-294  | 18.6        | 19.6   | 1             |                                  | 3.95        | Tension vein                       |
| SD-21-294  | 22.82       | 23.88  | 1.06          |                                  | 1.08        | Tension vein                       |
| SD-21-294  | 44          | 45     | 1             |                                  | 1.05        | Tension vein                       |
| SD-21-294  | 152.3       | 153.3  | 1             |                                  | 1.23        | Wawa Gold Corridor – Intrusion     |
| SD-21-294  | 194.78      | 195.78 | 1             |                                  | 14.7        | Wawa Gold Corridor – Intrusion     |
| SD-21-295  | 199.5       | 200.79 | 1.29          |                                  | 2.06        | Wawa Gold Corridor – Intrusion     |
| SD-21-296A | 626.61      | 629.48 | 2.87          | 2.7                              | 4.1         | Jubilee Shear Zone – Surluga South |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                          |
|------------|-------------|--------|---------------|----------------------------------|-------------|------------------------------------|
| SD-21-296A | 641.03      | 642    | 0.97          | 0.91                             | 10.21       | Jubilee Shear Zone – Surluga South |
| SD-21-296A | 94.9        | 95.9   | 1             |                                  | 3.11        | Sadowski Vein System               |
| SD-21-296A | 97.9        | 98.9   | 1             |                                  | 12.8        | Sadowski Vein System               |
| SD-21-297A | 88.36       | 90.38  | 2.02          |                                  | 29.29       | Sadowski Vein System               |
| SD-21-297A | 671.48      | 672.22 | 0.74          | 0.68                             | 24.1        | Jubilee Shear Zone – Surluga South |
| SD-21-297A | 682.75      | 684.87 | 2.12          | 1.94                             | 14.68       | Jubilee Shear Zone – Surluga South |
| SD-21-297A | 675.79      | 676.67 | 0.88          |                                  | 6.96        | Jubilee Shear Zone – Surluga South |
| SD-21-297A | 678.43      | 679.76 | 1.33          |                                  | 4.17        | Jubilee Shear Zone – Surluga South |
| SD-21-297A | 85.9        | 87.1   | 1.2           |                                  | 2.7         | Sadowski Vein System               |
| SD-21-298A | 321.32      | 322.36 | 1.04          |                                  | 3.37        | Minto Mine Shear Zone              |
| SD-21-298A | 86.35       | 87.5   | 1.15          |                                  | 24.8        | Sadowski Vein System               |
| SD-21-298A | 320.2       | 321.32 | 1.12          | 0.95                             | 26.93       | Minto Mine Shear Zone              |
| SD-21-298A | 322.36      | 323.35 | 0.99          | 0.84                             | 314         | Minto Mine Shear Zone              |
| SD-21-298A | 578.26      | 579.54 |               | 1.28                             | 9.95        | Quartz Vein                        |
| SD-21-298A | 609         | 610.38 | 1.38          | 1.27                             | 9.64        | Jubilee Shear Zone – Surluga South |
| SD-21-298A | 661.65      | 662.65 | 1             | 0.92                             | 45.8        | Jubilee Shear Zone – Surluga South |
| SD-21-298A | 664.75      | 666.85 | 2.1           | 1.93                             | 41.73       | Jubilee Shear Zone – Surluga South |
| SD-21-299  | 229         | 230    | 1             |                                  | 3.55        | Jubilee Shear Zone – Surluga North |
| SD-21-299  | 92          | 93.28  | 1.28          |                                  | 6.09        | Surluga North Vein Network         |
| SD-21-299  | 227.4       | 228.29 | 0.89          | 0.87                             | 8.76        | Jubilee Shear Zone – Surluga North |
| SD-21-299  | 238.25      | 239.25 | 1             | 0.98                             | 2.59        | Jubilee Shear Zone – Surluga North |
| SD-21-300  | 33.72       | 34.72  | 1             |                                  | 1.06        | Disseminated sulphides             |
| SD-21-300  | 93          | 94     | 1             |                                  | 2.87        | Sadowski Vein System               |
| SD-21-300  | 106.65      | 107.62 | 0.97          |                                  | 1.11        | Sadowski Vein System               |
| SD-21-301  | 255.2       | 256.2  | 1             |                                  | 4.82        | Jubilee Shear Zone – Surluga North |
| SD-21-301  | 228.59      | 229.46 | 0.87          | 0.79                             | 3.91        | Jubilee Shear Zone – Surluga North |
| SD-21-301  | 253         | 254    | 1             | 0.91                             | 5.52        | Jubilee Shear Zone – Surluga North |
| SD-21-302  | 614.15      | 615.15 | 1             |                                  | 26.64       | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 618.9       | 619.9  | 1             |                                  | 7.78        | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 620.9       | 621.76 | 0.86          |                                  | 2.7         | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 636.13      | 636.95 | 0.82          |                                  | 3.43        | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 636.95      | 637.76 | 0.81          |                                  | 13.54       | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 649.6       | 650.59 | 0.99          |                                  | 95.36       | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 652.75      | 653.7  | 0.95          |                                  | 17.82       | Jubilee Shear Zone – Surluga South |
| SD-21-302  | 672         | 673.02 | 1.02          |                                  | 3.98        | Jubilee Shear Zone – Surluga South |
| SD-21-303  | 171.54      | 173.81 | 2.27          |                                  | 2.73        | Surluga North Vein Network         |
| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                          |  |
|------------|-------------|--------|---------------|----------------------------------|-------------|------------------------------------|--|
| SD-21-304  | 257.8       | 258.79 | 0.99          |                                  | 2.96        | Surluga North Vein Network         |  |
| SD-21-305A | 56.12       | 57.14  | 1.02          |                                  | 8.39        | Sadowski Vein System               |  |
| SD-21-305A | 295.31      | 298.3  | 2.99          | 2.28                             | 1.8         | Minto Mine Shear Zone              |  |
| SD-21-305A | 683.38      | 684.37 | 0.99          | 0.85                             | 1.16        | Jubilee Shear Zone – Surluga South |  |
| SD-21-306  | 261.85      | 263    | 1.15          | 1.12                             | 1.75        | Jubilee Shear Zone – Surluga North |  |
| SD-21-307  | 88.53       | 89.57  | 1.04          |                                  | 1.94        | Sadowski Vein System               |  |
| SD-21-307  | 589.47      | 592.45 | 2.98          | 2.78                             | 1.41        | Jubilee Shear Zone – Surluga South |  |
| SD-21-308  | 257.45      | 259.6  | 2.15          | 1.95                             | 18.21       | Jubilee Shear Zone – Surluga North |  |
| SD-21-308  | 283.58      | 284.49 | 0.91          | 0.82                             | 18.14       | Jubilee Shear Zone – Surluga North |  |
| SD-21-308  | 88.5        | 89.92  | 1.42          |                                  | 3.81        | Surluga North Vein Network         |  |
| SD-21-309  | 334.34      | 334.83 | 0.49          |                                  | 4.27        | Minto Mine Shear Zone              |  |
| SD-21-309  | 363.59      | 364.27 | 0.68          |                                  | 16.4        | Minto Mine Shear Zone              |  |
| SD-21-309  | 484.37      | 484.87 | 0.5           |                                  | 7.1         | Shear Zone                         |  |
| SD-21-310  | 115.35      | 116.33 | 0.98          |                                  | 5.24        | Wawa Gold Corridor – Intrusion     |  |
| SD-21-310  | 116.33      | 117.26 | 0.93          |                                  | 4.97        | Wawa Gold Corridor – Intrusion     |  |
| SD-21-310  | 118.24      | 119.3  | 1.06          |                                  | 4           | Wawa Gold Corridor – Intrusion     |  |
| SD-21-310  | 158.14      | 159.09 | 0.95          |                                  | 3.56        | Wawa Gold Corridor – Intrusion     |  |
| SD-21-310  | 313.44      | 314.54 | 1.1           |                                  | 3.49        | Shear Zone                         |  |
| SD-21-310  | 314.54      | 315.49 | 0.95          |                                  | 25.95       | Shear Zone                         |  |
| SD-21-312A | 651         | 652.07 | 1.07          |                                  | 3.35        | Jubilee Shear Zone – Surluga South |  |
| SD-21-312A | 640.69      | 641.56 | 0.87          | 0.79                             | 9.33        | Jubilee Shear Zone – Surluga South |  |
| SD-21-312A | 645.61      | 646.62 | 1.01          | 0.92                             | 57.99       | Jubilee Shear Zone – Surluga South |  |
| SD-21-312A | 647.56      | 648.55 | 0.99          | 0.86                             | 15.92       | Jubilee Shear Zone – Surluga South |  |
| SD-21-313  | 786.31      | 787.3  | 0.99          | 0.73                             | 3.81        | Jubilee Shear Zone – Surluga South |  |
| SD-22-321  | 225.03      | 226.21 | 1.18          |                                  | 40.07       | Surluga North Vein Network         |  |
| SD-22-326  | 245.27      | 245.68 | 0.41          |                                  | 69.3        | Surluga North Vein Network         |  |
| DG-22-317  | 77.62       | 78.57  | 0.95          |                                  | 11.81       | Nyman Shear Zone                   |  |
| DG-22-317  | 78.57       | 79.4   | 0.83          |                                  | 23.8        | Nyman Shear Zone                   |  |
| DG-22-327  | 95.1        | 96.19  | 1.09          |                                  | 10          | Grace Shear Zone                   |  |
| DG-22-329  | 52.68       | 53.68  | 1             |                                  | 13.14       | Quartz Vein                        |  |
| SD-22-326  | 330.97      | 331.94 | 1.15          | 0.84                             | 3.94        | Jubilee Shear Zone – Surluga North |  |
| SD-22-330  | 246.52      | 247.57 | 1.05          |                                  | 4.14        | Surluga North Vein Network         |  |
| SD-22-331B | 767         | 768    | 1             |                                  | 3.21        | Jubilee Shear Zone – Surluga South |  |
| SD-22-337  | 334.79      | 335.6  | 0.81          | 0.61                             | 16.7        | Jubilee Shear Zone – Surluga North |  |
| SD-22-337  | 337.75      | 338.58 | 0.83          | 0.62                             | 24.9        | Jubilee Shear Zone – Surluga North |  |

| Hole ID   | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)* | Au<br>(g/t) | Gold Zone                                    |  |
|-----------|-------------|--------|---------------|----------------------------------|-------------|----------------------------------------------|--|
| SD-22-337 | 339.53      | 340.5  | 0.97          | 0.73                             | 13.8        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-337 | 355.81      | 359.65 | 3.84          | 2.88                             | 1.04        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-340 | 333.18      | 334.08 | 0.9           |                                  | 1.31        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-340 | 343.45      | 344.25 | 0.8           |                                  | 10.4        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-345 | 298.41      | 299.92 | 1.51          |                                  | 4.76        | Surluga North Vein Network                   |  |
| SD-22-345 | 343.22      | 343.95 | 0.73          |                                  | 6.71        | Jubilee Shear Zone – Surluga North           |  |
| DG-22-349 | 25.2        | 26.09  | 0.89          |                                  | 7.61        | Grace Shear Zone                             |  |
| SD-22-350 | 18.37       | 18.8   | 0.43          |                                  | 6.24        | Sadowski Vein System                         |  |
| SD-22-350 | 16.51       | 16.88  | 0.37          |                                  | 22.5        | Sadowski Vein System                         |  |
| SD-22-350 | 17.66       | 18.07  | 0.41          |                                  | 145.2       | Sadowski Vein System                         |  |
| SD-22-350 | 18.07       | 18.37  | 0.3           |                                  | 162.52      | Sadowski Vein System                         |  |
| SD-22-350 | 49.75       | 50.12  | 0.37          |                                  | 2.95        | Sadowski Vein System                         |  |
| SD-22-352 | 227.44      | 228.36 | 0.92          |                                  | 13.1        | Surluga North Vein Network                   |  |
| JS-22-356 | 242.55      | 243.55 | 1             |                                  | 2.55        | Jubilee Shear Zone - South of Parkhill Fa    |  |
| SD-22-357 | 256.5       | 257.26 | 0.76          |                                  | 1.54        | Surluga North vein network                   |  |
| SD-22-357 | 369.91      | 370.86 | 0.95          |                                  | 1.11        | Jubilee Shear Zone – Surluga North           |  |
| JS-22-359 | 233.32      | 234.45 | 1.13          |                                  | 3.14        | Jubilee Shear Zone - South of Parkhill Fault |  |
| SD-22-360 | 16.18       | 16.82  | 0.64          |                                  | 5.95        | Quartz Vein                                  |  |
| SD-22-360 | 256.17      | 257.32 | 1.15          |                                  | 1.21        | Minto Mine Shear Zone                        |  |
| SD-22-360 | 704.66      | 705.85 | 1.19          |                                  | 1.04        | Jubilee Shear Zone – Surluga South           |  |
| SD-22-361 | 231.8       | 233.2  | 1.4           |                                  | 2.4         | Surluga North Vein Network                   |  |
| SD-22-361 | 274.63      | 275.8  | 1.17          |                                  | 5.14        | Surluga North Vein Network                   |  |
| SD-22-361 | 379         | 381    | 2             |                                  | 20.8        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-363 | 405.56      | 406.56 | 1             |                                  | 7.75        | Jubilee Shear Zone – Surluga North           |  |
| SD-22-363 | 407.56      | 408.54 | 0.98          |                                  | 13.79       | Jubilee Shear Zone – Surluga North           |  |
| SD-22-364 | 690.85      | 692    | 1.15          |                                  | 3.42        | Jubilee Shear Zone – Surluga South           |  |
| SD-22-371 | 181.17      | 183.9  | 2.73          |                                  | 1.08        | Minto Mine Shear Zone                        |  |
| SD-22-371 | 618.27      | 619.42 | 1.15          |                                  | 8.48        | Jubilee Shear Zone – Surluga South           |  |
| SD-22-373 | 145.25      | 146.5  | 1.25          |                                  | 44.63       | Minto Stockwork                              |  |
| SD-22-373 | 147.49      | 148.5  | 1.01          |                                  | 17.68       | Minto Stockwork                              |  |
| SD-22-373 | 161.15      | 162.1  | 0.95          | 0.69                             | 80.8        | Minto Mine Shear Zone                        |  |
| SD-22-373 | 162.1       | 163.16 | 1.06          | 0.77                             | 231.5       | Minto Mine Shear Zone                        |  |
| SD-22-376 | 115.18      | 116.56 | 1.38          |                                  | 8.26        | Wawa Gold Corridor – Intrusion               |  |
| SD-22-376 | 116.56      | 117.67 | 1.11          |                                  | 19.39       | Wawa Gold Corridor – Intrusion               |  |
| SD-22-376 | 120.45      | 121.42 | 0.97          |                                  | 9.17        | Wawa Gold Corridor – Intrusion               |  |

| Hole ID    | From<br>(m) | To (m) | Length<br>(m) | Calculated<br>True<br>Width (m)*     | Au<br>(g/t) | Gold Zone                                    |
|------------|-------------|--------|---------------|--------------------------------------|-------------|----------------------------------------------|
| SD-22-376  | 204.38      | 205.65 | 1.27          |                                      | 4.41        | Wawa Gold Corridor – Intrusion               |
| SD-22-377  | 171.96      | 172.92 | 0.96          | 0.65                                 | 46.48       | Minto Mine Shear Zone                        |
| SD-22-377  | 172.92      | 173.89 | 0.97          | 0.66                                 | 53.72       | Minto Mine Shear Zone                        |
| SD-22-379A | 66.8        | 67.67  | 0.87          |                                      | 5.06        | New Vein Network south of Sadowski           |
| SD-22-379A | 71          | 71.69  | 0.69          |                                      | 59.7        | New Vein Network south of Sadowski           |
| SD-22-379A | 767.45      | 768.75 | 1.3           |                                      | 1.32        | Jubilee Shear Zone – Surluga South           |
| SD-22-379A | 771.75      | 772.75 | 1             |                                      | 2.53        | Jubilee Shear Zone – Surluga South           |
| SD-22-380  | 340.5       | 343.95 | 3.45          |                                      | 1.77        | Jubilee Shear Zone – Surluga North           |
| SD-22-380  | 343.22      | 343.95 | 0.73          |                                      | 6.71        | Jubilee Shear Zone – Surluga North           |
| SD-22-382  | 307.56      | 308.76 | 1.2           | 1.4 Surluga North Vein Network       |             | Surluga North Vein Network                   |
| SD-22-382  | 338.55      | 339.53 | 0.98          | 1.93 Jubilee Shear Zone – Surluga No |             | Jubilee Shear Zone – Surluga North           |
| SD-22-382  | 360.48      | 361.62 | 1.14          |                                      | 1.48        | Jubilee Shear Zone – Surluga North           |
| JS-22-384  | 201.18      | 202.2  | 2.02          |                                      | 1           | Jubilee Shear Zone - South of Parkhill Fault |
| SD-22-385  | 325.7       | 326.68 | 0.98          |                                      | 3.21        | Jubilee Shear Zone – Surluga North           |
| SD-22-385A | 327.59      | 328.48 | 0.98          |                                      | 14.1        | Jubilee Shear Zone – Surluga North           |
| SD-22-386  | 737.1       | 738.47 | 1.37          |                                      | 1.29        | Jubilee Shear Zone – Surluga South           |
| JS-22-388  | 131.58      | 133.11 | 1.53          |                                      | 0.62        | Jubilee Shear Zone - South of Parkhill Fault |
| SD-22-396  | 238.6       | 239.6  | 1             |                                      | 19.78       | Surluga North Vein Network                   |
| SD-22-396  | 243.59      | 245    | 1.41          |                                      | 30.97       | Surluga North Vein Network                   |
| SD-22-396  | 246         | 247    | 1             |                                      | 40.37       | Surluga North Vein Network                   |
| SD-22-396  | 249.5       | 251    | 1.5           |                                      | 28.77       | Surluga North Vein Network                   |
| SD-22-396  | 253.82      | 256.29 | 2.47          |                                      | 7.5         | Surluga North Vein Network                   |

Note: N/A - additional drilling is necessary to estimate the true width of the intersected zones. \*Assay results reported over intersection length for gold zones labelled: Tension Vein, Nyman Vein, Shear Zone, Parkhill #4, Mickelson Shear Zone, Minto E, Replacement Zone, Parkhill Shear Zone and William Gold Zone and Grace Shear Zone. Additional holes required to calculated true width.

# 11.0 SAMPLING PREPARATION, ANALYSES, AND SECURITY11.1 Historical Drilling Programs

For the drilling programs prior to 2007, no information is available about the sample preparation, analyses and security of historical drill core. However, from visual observations of the historical core boxes, the core was split using a mechanical core splitter. Duke (2012) also indicated that samples may have been analyzed by an assay laboratory on site initially. In the 1980s and 1990s, the samples were likely sent to Wawa Assay Laboratory, an unaccredited laboratory in Wawa. Duke (2012) assumed the assay method to have been fire assay with a gravimetric finish. No information about quality control measures and sample security is available.

Details about the sample preparation, analyses and security of core samples from Wawa GP's 2007 drilling program were described by Duke (2012). The core was cut in half using a core saw; one half was returned to the core box, the other half was put in a sample bag and sent to Accurassay Laboratories (Accurassay) in Thunder Bay, Ontario. Accurassay is accredited for gold under the ISO/IEC 17025 guideline. At Accurassay, the samples were dried, crushed, split and pulverized. A 30-g aliquot was used for fire assay analysis with an atomic absorption spectroscopy finish. Accurassay was independent of Wawa GP (Duke 2012). Wawa GP inserted 12 blanks and three standards into the sample stream. In addition, Accurassay repeated one analysis for every 10 samples (Duke, 2012). Sample security was described by Dow (2011): core was moved from the drill rig to the logging area by the drillers. Samples were transported to Accurassay by a bonded carrier.

Duke (2012) described the sampling procedure for the drill core from Augustine's 2011 drilling program. The core was transported from the drill rig to Augustine's secure logging and storage facility in Wawa. The core was cut in half using a core saw. One half was returned to the core box, the other half was put in a sample bag with a pre-numbered sample tag. Multiple sample bags were collected in rice bags; the rice bags were sealed, placed in pails, and shipped to Accurassay by Greyhound. Accurassay is accredited for gold under the ISO/IEC 17025 guideline. Accurassay is independent of Augustine.

Accurassay dried and crushed the sample to -8 mesh (2.38 mm). A subsample was pulverized, and 30 g of the pulverized material was analyzed by fire assay with an atomic absorption spectroscopy finish. Duke (2012) concluded that the sample collection, preparation, and security for the 2011 drilling program were adequate.

# 11.2 Red Pine 2014 to 2022 Sampling

The core collected by Red Pine during the 2014 to 2022 drilling programs was sampled in regular intervals of approximately 1.5 m within the previously tested or potential mineralized zones without strong visual indicators of gold and approximately 1.0 m in known mineralized zones with visual indicators of gold. 0.5 m is the minimal sample length. The core was cut in half for sampling using a core saw. A total of 58,377 samples were collected during this period. A total of 5,771 QA/QC CRM standards and blanks were inserted in the sample stream every 20 samples and 25 samples, respectively. The CRM and blanks used are listed in Table 11-1. A total of 3,150 CRMs and 2,621 blanks have been received and are listed in Table 11-2). Commencing in January of 2023, quartered (¼) HQ core field duplicates of Minto-style vein intervals began to be submitted.

For the 2014 to 2022 drilling programs, core samples were placed into a plastic bag together with a pre-numbered sample tag, and then sealed by means of a plastic zip tie. Individual sample bags were then placed into larger rice bags for shipping. For the 2014 and 2015 drilling programs, the rice bags containing the samples were transported from site to Actlabs in Timmins by Red Pine personnel.

For the 2016 to 2022 drilling programs, 4 individual sealed sample bags were placed into each rice bag with corresponding sample numbers written on the outside and a numbered security tag sealed each rice bag to prevent tampering (See Figure 11-1). Each security tag was recorded by Red Pine personnel and the information was transmitted to the receiving laboratory. The rice bags were transported by Red Pine personnel to Manitoulin transport in Wawa from where the samples were shipped to the laboratory in reusable open plastic bins. Red Pine, in collaboration with Manitoulin and the laboratories, kept track of each shipment upon its reception at the laboratory and the laboratory validated that the security tags on each rice bag were intact upon reception of the samples.

Figure 11-1: Security Sealed Rice Bags Containing 4 Individual Sample Bags Each

Other than the period between February 1, 2017, and June 8, 2017, when the core samples were shipped to SGS Canada (SGS), in Cochrane, Ontario, all core samples during the 2016 to 2022 drill programs were shipped to Activation Laboratories Ltd. ("Actlabs") in Ancaster Ontario. Both Actlabs and SGS are ISO/IEC 17025 certified laboratories and there is no relationship between Red Pine and Actlabs and SGS other than that Red Pine commissioned Actlabs and SGS to analyze drill core samples from the Project.

The remaining drill core is stored in Red Pine's secure drill core logging and outdoor storage facility (Figure 11-2).



#### Figure 11-2: Secure Core Storage Area Next to Red Pine's Core Logging Facility in Wawa, Ontario 11.2.1 Analytical Procedures

Two independent certified laboratories were used for the gold analyses of the Project. A total of 64,287 core samples were analyzed at Activation Laboratories (Actlabs) in their facilities in Timmins and Ancaster, and 4,606 samples were analyzed by SGS at their facilities in Cochrane and Lakefield. Two routine gold analytical packages were selected by Red Pine for the analysis completed by Actlabs and SGS, including:

- 1) Fire-assay with an AAS finish (SGS method GO FAI515, Actlabs method 1A2-50).
- 2) Metallic Screen on 1000 g of samples (SGS method GO FAS51K; Actlabs method 1A4-1000).

For the fire-assay analysis, the entire sample is crushed to -10 mesh (1.7 mm), mechanically split and an aliquot of 250 g is pulverized to at least 95% -150 mesh (105 µm). Fifty grams of the pulverized sample is used for the fire assay procedure. Gold analysis was completed by AAS at Actlabs and ICP-AES at SGS.

For the metallic screen analysis, a 1,000 g split is sieved at 100 mesh (149  $\mu$ m). Assays are performed on the entire +100 mesh and on two splits of the -100 mesh fraction. The final assay is calculated using the weight and gold analysis of each fraction.

Metallic screen assays were completed for every sample of the Minto vein where coarse gold is relatively abundant. All the samples with a gold grade over 2 g/t from the fire assay were also systematically re-analyzed by metallic screen for validation of the detected gold grade.

In addition to gold analyses, systematic multi-element analyses using ICP-MS and ICP-AES following a 4 acid near-complete digestion were completed on the drill core samples from the 2014 and 2017 to 2022 drilling programs.

Red Pine used the multi-element package GE ICM40B from SGS and the package ME-MS61 (2014-2018) UT-6M (after 2018) of Actlabs.

#### 11.2.2 Physical Rock Property Measurements

Magnetic susceptibility and specific gravity (SG) on the drill core were recorded by Red Pine. SG was determined by weighing a piece of core in air and in water (Figure 11-3) and by calculating SG using the formula:

 $SG = \frac{Sample \ Weight \ in \ Air}{Sample \ Weight \ in \ Air - Sample \ Weight \ in \ Water}$ 



Figure 11-3: SG Measurement at Red Pine's Core Logging Facility

#### 11.2.3 Red Pine Data Management

All existing exploration data for the Project, including historical data as well as that collected during the 2014 to 2020 exploration programs, is amalgamated into three central Excel<sup>™</sup> based databases maintained internally by Red Pine. Starting in the spring of 2017, all drilling data were first collected and validated with internal validation checks with MXDeposit, then exported and amalgamated into the central Excel<sup>™</sup> based database. One database is for the drilling data, one database is for the trenching data and one database is for the prospecting sample data In 2021, with the help of Minalytix, all of the historical Red Pine Drilling Data was imported into MX Deposit as the centralized data management software for all drilling and trenching data. QA/QC data is now checked with the internal CRM QA/QC charts within MX Deposit. Updates are still made to the excel databases as new data, like geological drill logs or analytical results, becomes available or when Red Pine's internal validation procedures detect errors in the databases. These excel sreadsheets are now kept as a backup of all the current data and still utilized when importing into various types of modelling software. All the geological modelling and interpretations made for the Project are using the data collected and validated in the main MXDeposit databases.

#### 11.2.4 Quality Assurance and Quality Control Programs

Quality control (QC) measures are typically set in place to ensure the reliability and trustworthiness of exploration data. These measures include written field procedures and independent verifications of aspects such as drilling, surveying, sampling and assaying, data management, and database integrity. Appropriate documentation of QC measures and regular analysis of QC data are important as a safeguard for Project data and form the basis for the QA program implemented during exploration.

Analytical control measures typically involve internal and external laboratory control measures implemented to monitor the precision and accuracy of the sampling, preparation, and assaying. They are also important to prevent sample mix-up and to monitor the voluntary or inadvertent contamination of samples. Assaying protocols typically involve regularly duplicating and replicating assays and inserting QC samples to monitor the reliability of assaying results delivered by the assaying laboratories. Check assaying is normally performed as an additional test of the reliability of assaying results. This generally involves re-assaying a set number of sample rejects and pulps at a secondary umpire laboratory.

Given the coarse nature of some of the gold mineralization Red Pine has relied partly on the internal analytical QC measures (lab duplicate assay) implemented by Actlabs and SGS as a means of judging accuracy. Recently, Red Pine has begun to submit ¼ core duplicate samples of recognized Minto Style mineralization veins as a means of both assessing the nature of coarse gold mineralization event and a more accurate estimation of grade for that interval. In addition, Red Pine implemented external analytical control measures consisting of the use of control samples (blanks and CRMs) inserted in all sample batches submitted for assaying. Umpire check assaying was not performed. The routine insertion rate was 1 standard per 20 samples and 1 blank per 25 samples sent. Additional blanks were also inserted after vein samples when many specks of native gold were observed in the sampled vein.

Sixteen certified gold reference materials sourced from commercial suppliers have been used (Table 11-1). Silica sand provided by Actlabs was used in 2014 and 2015 as blank material and Bell & Mackenzie White Lightning® 2040 sand was used from 2016 to 2022 as material for blanks.

In early 2017, Actlabs turnaround time on sample analysis was longer than industry standard and Red Pine made the strategic decision to switch to SGS Canada in Cochrane, Ontario.

Through Red Pine's QA/QC checks (OREAS 12a, 11.79 g/t Au), it was discovered that SGS Canada in Cochrane had not been running over limits on OREAS 12a when analyzing over 10 g/t Au, this was due to a communication error between SGS and Red Pine. Communications errors plus lengthy delays in QA/QC results and re-assays with SGS prompted Red Pine to return to ACT Labs from mid-2017 to present.

| Standard     | Certified<br>Au (g/t) | 1SD   | 2SD<br>(Low) | 2SD<br>(High) | 3SD<br>(Low) | 3SD<br>(High) | Method<br>Name* | Matrix                                                                                                                                                                                         | Mineralization<br>Style |
|--------------|-----------------------|-------|--------------|---------------|--------------|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| OREAS<br>12a | 11.79                 | 0.24  | 11.31        | 12.27         | 11.07        | 12.51         | FA              | A blend of gold bearing<br>Magdala ore from the Stawell<br>Gold Mine, west-central<br>Victoria, Australia and barren<br>tholeiitic basalt from Epping,<br>Victoria, Australia.                 | Orogenic Lode<br>Au     |
| OREAS<br>19a | 5.49                  | 0.1   | 5.29         | 5.69          | 5.19         | 5.79          | FA              | A blend of gold bearing<br>Magdala ore from the Stawell<br>Gold Mine, west-central<br>Victoria, Australia and barren<br>tholeiitic basalt from Epping,<br>Victoria, Australia.                 | Orogenic Lode<br>Au     |
| OREAS<br>202 | 1.244                 | 0.053 | 1.138        | 1.35          | 1.085        | 1.402         | FA              | A blend of gold bearing<br>Magdala ore from the Stawell<br>Gold Mine, west-central<br>Victoria, Australia and barren<br>tholeiitic basalt from Epping,<br>Victoria, Australia.                 | Orogenic Lode<br>Au     |
| OREAS<br>205 | 1.244                 | 0.053 | 1.138        | 1.35          | 1.085        | 1.402         | FA              | A blend of gold bearing<br>Magdala ore from the Stawell<br>Gold Mine, west-central<br>Victoria, Australia and barren<br>tholeiitic basalt from Epping,<br>Victoria, Australia.                 | Orogenic Lode<br>Au     |
| OREAS<br>206 | 2.197                 | 0.081 | 2.165        | 2.229         | 2.188        | 2.207         | FA              | A blend of gold bearing<br>Magdala ore from the Stawell<br>Gold Mine, west-central<br>Victoria, Australia and barren<br>tholeiitic basalt from Epping,<br>Victoria, Australia.                 | Orogenic Lode<br>Au     |
| OREAS<br>209 | 1.58                  | 0.044 | 1.49         | 1.66          | 1.44         | 1.71          | FA              | A blend of Au-bearing<br>Magdala ore from Stawell Au<br>Mine, west-central Victoria,<br>Australia and barren tholeiitic<br>basalt from Epping, Victoria,<br>Australia                          | Orogenic Lode<br>Au     |
| OREAS<br>210 | 5.49                  | 0.15  | 5.18         | 5.79          | 5.03         | 5.94          | FA              | Alkali olivine basalt and<br>sulphide-bearing (pyrite,<br>arsenopyrite) Au ore in quart-<br>sericite-carbonate schist<br>assemblage                                                            | Orogenic Lode<br>Au     |
| OREAS<br>216 | 6.66                  | 0.155 | 6.34         | 6.97          | 6.19         | 7.12          | FA              | A blend of Archean<br>greenstone-hosted Wilber<br>Lode primary ore from the<br>Andy Well Gold Mine and<br>barren Cambrian greenstone<br>sourced from a quarry north of<br>Melbourne, Australia | Orogenic Lode<br>Au     |
| OREAS<br>218 | 0.531                 | 0.017 | 0.497        | 0.565         | 0.48         | 0.582         | FA              | A blend of Archean<br>greenstone-hosted Wilber<br>Lode primary ore from Andy<br>Well Au Mine and barren<br>Cambrian greenstone sourced<br>from a quarry north of<br>Melbourne, Australia       | Orogenic Lode<br>Au     |
| OREAS<br>226 | 5.45                  | 0.126 | 5.2          | 5.7           | 5.07         | 5.83          | FA              | A blend of Archean<br>greenstone-hosted Wilber<br>Lode primary ore from Andy<br>Well Au Mine and barren<br>Cambrian greenstone sourced<br>from a quarry north of<br>Melbourne, Australia       | Orogenic Lode<br>Au     |

## Table 11-1: CRM Standard and Blank Material Used by Red Pine during the 2014 to 2022 Drilling Programs

| Standard      | Certified<br>Au (g/t) | 1SD   | 2SD<br>(Low) | 2SD<br>(High) | 3SD<br>(Low) | 3SD<br>(High) | Method<br>Name* | Matrix                                                                                                                                                                                                                                                                                      | Mineralization<br>Style                              |
|---------------|-----------------------|-------|--------------|---------------|--------------|---------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| OREAS<br>229  | 12.11                 | 0.206 | 11.7         | 12.53         | 11.49        | 12.73         | FA              | Archean greenstone-hosted<br>Wilber Lode primary ore from<br>the Andy Well Au Mine                                                                                                                                                                                                          | Orogenic Lode<br>Au                                  |
| OREAS<br>229B | 11.95                 | 0.288 | 11.37        | 12.53         | 11.09        | 12.81         | FA              | Blend of Archean greenstone-<br>hosted Wilber Lode primary<br>ore from the Andy Well Gold<br>Mine and barren Cambrian<br>greenstone sourced from a<br>quarry north of Melbourne,<br>Australia.                                                                                              | Orogenic Lode<br>Au                                  |
| OREAS<br>231  | 0.542                 | 0.015 | 0.512        | 0.573         | 0.497        | 0.588         | FA              | Blend of gold-bearing ore and<br>barren greenstone. The ore<br>was sourced from the Frogs<br>Leg Gold Mine located 19km<br>west of Kalgoorlie in Western<br>Australia.                                                                                                                      | Orogenic Lode<br>Au                                  |
| OREAS<br>235  | 1.59                  | 0.038 | 1.51         | 1.66          | 1.47         | 1.7           | FA              | Blend of high grade gold-<br>bearing ore and barren<br>metasediments.Primary gold<br>mineralization occurs as<br>disseminated arsenopyrite<br>and pyrite in a quartz–<br>carbonate veinlet<br>stockwork.The ore was<br>sourced from the Fosterville<br>Mine, Bendigo Austalia.              | Orogenic Lode<br>Au                                  |
| OREAS<br>279  | 6.55                  | 0.218 | 6.11         | 6.99          | 5.9          | 7.2           | FA              | Blend of high-grade gold-<br>bearing ore and barren<br>sediments (shale, quartz and<br>limestone). The ore was<br>sourced from the Leeville<br>Mine northwest of Carlin,<br>Nevada                                                                                                          | Carlin Trend<br>Orogenic Lode<br>Au                  |
| OREAS<br>904  | 0.045                 | 0.004 | 0.036        | 0.0536        | 0.032        | 0.0579        | FA              | Suite of four transitional to<br>oxide copper CRMs prepared<br>from CST's Lady Annie Mine,<br>located 120 kms northwest of<br>Mount Isa, Queensland,<br>Australia. Mineralisation at<br>Lady Annie is hosted in<br>dolomitic, carbonaceous and<br>argillaceous sandstones and<br>siltstones | Fault controlled<br>silicification -<br>copper oxide |
| Blank         |                       |       |              |               |              |               |                 | Coarse silica sand provided<br>by Actlabs or B&M White<br>Lightning 2040 - expected<br>grade of <0.005 g/t Au                                                                                                                                                                               |                                                      |

Note: \*All standards are produced by Ore Research & Exploration Pty.

A summary of the total number of QA/QC samples inserted is presented in Table 11-2.

The exploration work completed by Red Pine was conducted using documented procedures and involved extensive verifications and validation of exploration data. During drilling, experienced Red Pine geologists implement industry standard measures designed to ensure the reliability and trustworthiness of the exploration data.

Red Pine monitored the analytical quality control data on a real-time basis. Failures of quality control samples greater than two standard deviations were investigated, and appropriate actions taken, including potentially requesting re-assaying of certain batches of samples.

#### 11.2.4.1 Review of Analytical QA/QC Data

Red Pine provided assay results for the external analytical QC samples for the period of 2014 to 2022 (note that assay results for the 2022 drilling were received and validated till Jan 31, 2023. The data was provided in the form of Excel<sup>™</sup> spreadsheets. External QC samples comprised field blanks and CRMs.

Sample blanks and CRM's data were summarized on a series of control charts to highlight the performance of the control samples.

The analytical quality control data produced by Red Pine between 2014 through 2022 are kept on file at the Red Pine Exploration office and are summarized in Table 11-2. Blanks as well as the most recent CRM standards, representing low, medium and high Au values typically encountered at the Wawa Gold deposit are presented in an analytical format in Figure 11-4 through Figure 11-7.

| Sample         | Count (received) |
|----------------|------------------|
| Blanks         | 2620             |
| QC samples     | 3150             |
| OREAS 12a      | 152              |
| OREAS 19a      | 49               |
| OREAS 202      | 4                |
| OREAS 205      | 161              |
| OREAS 206      | 12               |
| OREAS 209      | 555              |
| OREAS 210      | 611              |
| OREAS 216      | 27               |
| OREAS 218      | 540              |
| OREAS 226      | 114              |
| OREAS 229      | 215              |
| OREAS 229B     | 62               |
| OREAS 231      | 202              |
| OREAS 235      | 232              |
| OREAS 279      | 204              |
| OREAS 904      | 10               |
| Lab Duplicates | 5,161            |

#### Table 11-2: QA/QC Sample Count

Typically, a CRM failure was considered when the CRMs analyses were outside 3 standard deviations (SD) of the certified values. In those situations, Red Pine requested the laboratory to re-analyze the CRM and a certain number of core samples around the CRM that failed. In the few cases where multiple CRM failures were observed in one assay certificate or when many CRMs were outside the 2SD range of the certified value, Red Pine requested that the entire certificate to be re-tested. In a retrospective analysis, some of the outliers in the QA/QC data were found to be caused by sample misidentification whereas others were related to analytical problems at the laboratory.

Red Pine has monitored internal the Fire Assay lab duplicate results as a means of gauging the precision of the laboratory procedures. Staff geologists review the results on a monthly basis. A total of 5,161 lab duplicates have been received by Red Pine since 2014 (See Table 11.2). An analysis of lab duplicates (344) above the 0.005 ppm

detection limit (0.1 ppm Au) and below the 5 ppm Au overlimit (4.51 ppm Au) reveals acceptable precision (6.04% HARD) and no obvious bias (1.24 % HRD) in the Fire Assay procedure.

Samples that have had assay determinations via two methodologies because of threshold triggering (Red Pine samples >2ppm Au in Fire Assay automatically trigger a Metallic Screen Analysis to test for coarse gold) are not technically duplicates. There is a potential bias resulting from the different methodologies applied, the different subsample weights used, and the lack of arbitrary selection. However, they can be used to evaluate bias and precision versus one another. A limited number of such samples (396) chosen at a reasonable value (0.1ppm Au) above detection (1A2-0.005) but below (4.99) the over limit of Fire Assay (1A2-5 ppm Au) indicated that there was no obvious bias (-4.86% HRD) between the methodologies however there was poor precision (20.25% HARD) between the two determinations. The results of the small sample set confirm the continued application of metallic screen methodology in determining the potential coarse gold content.



Figure 11-4: Control Chart for Blanks between 2014 and 2022



Figure 11-5: Control Chart for CRM OREAS 231 between 2014 and 2022



Figure 11-6: Control Chart for CRM OREAS 235 between 2014 and 2022



Figure 11-7: Control Chart for CRM OREAS 279 between 2014 and 2022

# **11.3 QP Comments on QA/QC**

It is the QP's opinion that the sample preparation, security, and analytical procedures used by Red Pine are consistent with industry standard practices and that the analytical results delivered by SGS and Actlabs are sufficiently reliable to inform Mineral Resource estimation. The QP has no material concerns with the current Red Pine geological or analytical procedures used or the quality of the Red Pine data.

The QP recognizes that, as part of the previous report recommendations, Red Pine has moved the drill hole and assay data to a cloud-based database system by MXDeposit. Red Pine has also recently began a program of <sup>1</sup>/<sub>4</sub> core field duplicates relative to Minto style mineralization which will further aid in QA/QC controls as well as characterizing the local grade distribution.

Previous report site visits have taken both current drilling ¼ core field duplicates and historical core reassaying as part of the verification process (see Item 12.0). These have provided some examples of field and umpire duplicate sampling. The QP recommends a regular program of duplicate samples (field, pulp, and umpire) in order to help quantify deposit variability and identify any potential laboratory bias.

## **12.0 DATA VERIFICATION**

The QP completed several data verification checks for the 2022 Wawa Gold Technical Report. The verification process included a 2-day site visit to the Project site to review geological procedures, chain of custody of drill core samples, drill collar inspections and the collection of 8 independent samples for metal verification. Other data verification included a 25 resample analysis of historic Au assay values in the Surluga (Jubilee Shear Zone) and Minto mineral zones, spot check comparisons of Au assays from the drill hole database against original assay records (lab certificates) and a review of QA/QC performance for drilling completed between 2014-2022 (note that 2022 drill results were received and validated till Jan 21, 2023). Golder Associates, prior to WSP's incorporating the company, completed two previous site visits (2018 and 2019) at the Wawa Gold project in which verification logging and sampling, collar co-ordinates, and assay database verification were conducted. The QP for those reports found that the data collection, methods, and QA/QC procedures used were consistent with CIM best practice guidelines. The QP of this report section has reviewed those previous reports and is satisfied with their conclusions.

#### 12.1.1 Site Visit

A site visit to the Project site was carried out by James McDonald, P.Geo., from October 25, 2022, to October 26, 2022. The site visit included the following activities:

- Confirmation core logging and independent assay verification on selected drill core samples.
- Inspection of drill hole collar locations.
- Review of procedures and collection of data.
- Independent assay verification of 25 historical samples (pre-2014).

An additional site visit as was carried out by the metallurgical QP, Steve Haggarty, P. Eng on May 25, 2023. The site visit included the following activities:

- To witness firsthand the remnant drill core from mineralized intercepts that were previously selected for metallurgical testing.
- To visually inspect the drill core containing finely disseminated pyrite and pyrrhotite, associated with relatively fine quartz veining, that is characteristic of the deposit, with variable gold, arsenopyrite, chalcopyrite, and sphalerite content.

Details of the site visit and data verification are summarized in the following sub-Items.

#### 12.1.2 Independent Logging and Sample Verification

WSP selected intervals from eight drill holes from the 2020, 2021 and 2022 drill programs for independent logging and sample analysis. See Table 12-1 for a list of holes and assay results. Figure 12-1 and Figure 12-2 provide examples of verification intervals from drill holes SD-21-312A and SD-22-377, showing examples of quartz veining hosted in hydrothermally altered and highly sheared diorite. The Red Pine drill logs were found to match the observed core reasonably well and no material issues were identified.

Eight quarter-sawn verification samples were taken from the original half core sample intervals. The QP submitted the samples, as well as one certified reference material for metallic screen analysis at the certified Lab ALS (ALS

AU\_SCR24). This method is similar to the procedure used by Activation Laboratories (Actlab) (the current lab used by Red Pine Exploration and used in the original analysis of selected verification sample intervals).

It should be noted that the volume of sampled material was not the same since Red Pine samples were based on half-sawn HQ core (63.5-millimetre core diameter) and the verification samples were based on quarter-sawn HQ core. The ALS process AU\_SCR24 entails a 1 kg pulp screened to 100 microns. A duplicate 50 gram (g) assay on screen undersize and an assay of entire oversize fraction. Table 12-1 summarizes the core intervals sampled and compares the verification results to the Red Pine assay values.



Figure 12-1: SD-21-312A 1/4 Core Verification Sampling (Jubilee Shear Zone)



Figure 12-2: SD-22-377 Quarter Core Verification Sampling (Minto Shear Zone)

| HOLE ID    | Target Shear<br>Zone | Vein<br>Mineralization<br>Event | FROM<br>(m) | TO (m) | LENGTH<br>(m) | Red Pine<br>Au (ppm) | WSP Au<br>(ppm) |
|------------|----------------------|---------------------------------|-------------|--------|---------------|----------------------|-----------------|
| SD-22-363  | Jubilee              | Jubilee                         | 407.56      | 408.54 | 0.98          | 13.79                | 10.3            |
| SD-21-301  | Jubilee              | Jubilee                         | 253         | 254    | 1             | 5.52                 | 3.3             |
| SD-20-289  | Jubilee              | Jubilee                         | 571.14      | 572.01 | 0.87          | 12.5                 | 11.05           |
| SD-22-337  | Jubilee              | Minto                           | 336.1       | 336.98 | 0.88          | 0.04                 | 0.19            |
| SD-21-308  | Jubilee              | Minto                           | 257.45      | 258.52 | 1.07          | 21.34                | 5.38            |
| SD-21-312A | Jubilee              | Minto                           | 645.61      | 646.62 | 1.01          | 57.99                | 6.24            |
| SD-21-298A | Minto                | Minto                           | 320.2       | 321.32 | 1.12          | 26.93                | 0.14            |
| SD-22-377  | Minto                | Minto                           | 171.96      | 172.92 | 0.96          | 46.48                | 0.19            |

Table 12-1: Independent Sample Verification Intervals

Figure 12-3 provides a graphical comparison of the 2022 verification assays versus original. The QP observed that four of the five Minto Mineralization event veins resulted in significantly different values between the original and re-assay (Table 12-1). The Minto Vein Mineralization event is known to be susceptible to a coarse nugget effect and, coupled with the volume variance between the original half core and quarter core verification sample size is likely to have been responsible for the grade discrepancy. Conversations with Red Pine staff indicate that the current practice when observing VG is to draw the cutting line evenly splitting the vein carrying the vg. The QP recommends that Red Pine create a procedure where either the left or right side of the cut line is consistently placed in the sample bag regardless of the presence of VG. As indicated in Item 11.3, Red Pine has begun the collection of duplicate samples in the Minto mineralization style veins as a means of quantifying the coarse gold effect in this style of mineralization. The QP recommends that the same analysis method is used for both samples.



Figure 12-3: XY Scatterplot Comparison of Verification Sample Results

#### 12.1.3 Drill Collar Inspection

Three drill collar locations were visited and surveyed using a handheld GPS to confirm the collar survey data provided by Red Pine. All collar locations were found to be within the accuracy of the GPS as summarized in Table 12-2. Figure 12-4 represents the collar location for drill hole SD-21-302. No drills were active at the time of the site inspection.

Historical collar locations could not be confirmed due to the lack of location knowledge by current staff present on rotation at the time of the site visit. The QP has reviewed the historical data verification completed by Ronacher, Mackenzie, and Bernier (2015) and Golder (2018, 2021) and is satisfied that the historical collar data is sufficiently accurate.

| Hole ID    | Easting<br>Golder<br>(UTM) | Easting<br>Red Pine<br>(UTM) | Difference<br>Easting<br>(m) | Northing<br>Golder<br>(UTM) | Northing<br>Red Pine<br>(UTM) | Difference<br>Northing<br>(m) |
|------------|----------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|
| SD-21-294  | 668150                     | 668149.8                     | 0.3                          | 5316945                     | 5316946.1                     | -1.1                          |
| SD-21-297A | 668548                     | 668546.1                     | 1.9                          | 5315427                     | 5315423                       | 4                             |
| SD-21-302  | 668534                     | 668535.8                     | -1.8                         | 5315449                     | 5315449.5                     | -0.5                          |

Table 12-2: Comparison of Drill Hole Collar Coordinates



Figure 12-4: Drill Hole Collar Location of Hole SD-21-302

The QP recommends a program of identifying the collars with a permanent durable bore hole tagging system.

## 12.1.4 2022 Historical Core Verification Sampling

Red Pine has recovered historical (pre Red Pine) core in trays from different storage locations in the area and transferred them to the current central logging and core storage site. The condition and quality of this core was still being assessed during the QP site visit. The QP designed a verification sampling program from the known available historical (pre-2014) core whose Au values were used to construct the 2018/2019 Mineral Resource Estimates for Minto and Surluga deposits respectively (See Table 12-3 and Figure 12-5). All samples were analyzed by ALS Vancouver using a 50g Fire Assay with a gravimetric finish.



Figure 12-5: 2022 Historical Core (pre2014) Verification Re-assay versus Original Assay

| Hole<br>Number | From   | То     | Original<br>Grade Au<br>ppm | Re-assay<br>Grade Au ppm |
|----------------|--------|--------|-----------------------------|--------------------------|
| 07-385*        | 61.1   | 62.4   | 16.77                       | 4.75                     |
| 07-387         | 480.7  | 481.7  | 3.37                        | 2.61                     |
| S206           | 170.26 | 170.69 | 11.59                       | 14.15                    |
| S229           | 104.85 | 105.77 | 7.95                        | 8.11                     |
| S235           | 157.58 | 158.5  | 3.46                        | 0.0025                   |
| S240           | 50.9   | 52.73  | 12.47                       | 0.23                     |
| S255           | 136.25 | 137.16 | 6.03                        | 1.34                     |
| S283           | 250.42 | 251.16 | 10.15                       | 8.23                     |
| S287           | 145.69 | 146.61 | 3.02                        | 0.08                     |
| S290           | 220.98 | 222.81 | 3.02                        | 2.36                     |
| S316           | 337.26 | 338.18 | 4.66                        | 3.45                     |
| S316           | 331.77 | 332.18 | 3.57                        | 5.97                     |
| S316           | 335.43 | 336.35 | 3.98                        | 5.2                      |
| U0443L3        | 16.15  | 16.76  | 11.66                       | 11.85                    |
| U0443L3        | 16.76  | 17.37  | 59.66                       | 39                       |
| U0443L3        | 17.37  | 18.29  | 6.17                        | 2.68                     |
| U0443L3        | 18.29  | 19.2   | 2.06                        | 6.9                      |
| U0587L3        | 10.36  | 10.97  | 3.77                        | 1.88                     |
| U0666L5        | 26.67  | 27.43  | 8.57                        | 0.78                     |
| U0774L6        | 25.6   | 26.21  | 7.89                        | 3.88                     |
| U0943L6        | 33.01  | 33.62  | 11.31                       | 0.9                      |
| U0946L6        | 9.81   | 10.67  | 3.09                        | 2.8                      |
| U1220L6        | 10.06  | 10.97  | 8.23                        | 20.1                     |
| U1652L5        | 70.87  | 71.93  | 8.16                        | 6.2                      |
| U1694L4        | 50.9   | 51.97  | 19.06                       | 6.01                     |

Table 12-3: Original and 2022 Re-Assay Results from Historical Core

Note: \* Composited sample

The entire remaining half core (BQ size, mechanically split) was photographed and submitted for sampling. The QP finds that despite the poor to marginal precision the current re-assay results demonstrate the presence of gold values in the historical core from the Wawa Gold project.

## 12.1.4.1 Previous NI 43-101 Assay Verification Programs

There have been three previous reports on the Wawa Gold project since Red Pine began drilling in 2014; 1) 2015 RonacherMcKenzie/SRK-Wawa Gold Project, 2) 2018 Golder-Minto Mine South, and 3) 2019/2021 Golder-Wawa Gold Project. All three reports obtained ¼ core verification samples for the current drilling during that period in question (See Figure 12-6). The 2015 SRK and the 2019/2021 Golder Reports also took verification samples from the available pre-Red Pine historical drill core (See Figure 12-7). The QP of this current report has reviewed the methodology and results for those verification sample assays from the previous reports and is satisfied with their conclusions.

An amalgamation of all the previous verification data plus the current (2022) verification sample results are presented in Figure 12-6, representing 2014-2022 Red Pine drilling differentiated by NI 43-101 report year and mineralization event and Figure 12-7, representing pre-Red Pine historical drilling results.



#### Figure 12-6: Summary of Verification Samples from 2014-2022 Red Pine Drilling

In Figure 12-6 the Jubilee mineralization event samples confirm of the presence of gold and a reasonable comparison of values between the two assays. The Minto style mineralization assay values have a similar to



Figure 12-3 (repeat of some data) which suggest a bias in the original sample results while also illustrating the presence of coarse gold.

Figure 12-7: Summary of Verification Samples from pre-Red Pine Historical Drilling

Figure 12-7 displays a slight bias to the original sample assays. A summary graph and statistics of consultants pre-Red Pine historical verification sampling assays displayed in Figure 12-8. The "% Average HRD" of 15.4% indicates marginal precision in the historical sample database. However, volume variance, mechanical splitting, multiple laboratories and procedures, different ownership sample processing techniques, and the presence of coarse grained gold suggests that "marginal precision" in the historical sample database may be the norm.

The QP recommends 1) continuing to catalogue the rescued historical core. 2) Create a program of verification sampling in the historical core where 4%-5% of the samples within the resource envelope are re-assayed as duplicates.



Figure 12-8: All Historical Core Re-Assay Results versus Original Values

## 12.1.5 QA/QC Review

The QP independently reviewed the QA/QC data provided by Red Pine for drilling completed in the Surluga deposit between 2016 to present. The data consisted of assay values for CRMs, consisting of standards and blanks, no duplicate analyses were completed by Red Pine. The assay results were analyzed for the most recent commonly used standards which consisted of Oreas 231 (1.58 g/t), Oreas 235 (5.49 g/t), and Oreas 279 (0.53 g/t) as well as all blanks (please see Figure 11-4 to Figure 11-7. Out of 3,150 standard, and 2,620 blank samples analyzed, 198 (standards) and 42 (blanks) issues were found where the assayed values were considered to be a "hard failure," outside of plus or minus 3 standard deviations of the certified mean value. On review of these failures, it was determined that Red Pine had followed up on these issues and appropriate actions had been taken to ensure the quality of the data.

No QA/QC data is available for the historical assay data. During the time periods of the historical drilling, it was common that mining and exploration companies would rely on the internal QA/QC procedures used by the laboratories, but none of that information is currently available.

The QP recommends the use a regular program of duplicate samples (field, pulp, and umpire) in order to help quantify deposit variability and identify any potential laboratory bias.

#### 12.1.6 Assay Database Verification

A total of 377 samples were reviewed for database verification of assay values compared against the original laboratory certificates. These samples were selected from within the Jubilee Shear zones and represent all samples with grades greater than 3 g/t with sample dates ranging from 2019 to 2022.

The previous 2019 report completed a database verification on samples between 2011- 2019. The historical database assays could not be verified in this manner as Red Pine does not have the assay certificates for historical drill programs prior to 2011 so the historical assay data could not be directly confirmed.

Table 12-4 provides a summary of the assay verification results. No issues were identified. Red Pine Exploration uses a methodology of metallic screen assays results superseding fire assay (2 ppm) with an AA finish results which is appropriate for this deposit.

| No. Samples | No. Samples | No. Samples  | No. Samples         |
|-------------|-------------|--------------|---------------------|
|             | Matching    | Not Matching | Missing Certificate |
| 377         | 377         | 0            | 0                   |

#### Table 12-4: Summary of Assay Comparisons to Original Certificates

## 12.1.7 2018 Confirmation Drill Hole Program

The QP for the 2019 report designed a confirmation drill hole program for Red Pine in order to confirm general locations and grades from the historical holes, fill in gaps where there was missing sample data due to selective sampling practices from historical operators, and to confirm that areas of the deposit were not mined out. The program was completed by Red Pine in 2018 and consisted of 11 HQ-sized holes, located in densely drilled and developed areas, as outlined in red in Figure 12-9.



Figure 12-9: 2018 Confirmation Drill Hole Locations (Plan View)

Figure 12-10 to Figure 12-12 provide examples of visual comparisons between confirmation holes (in yellow) and neighboring historical holes. Based on a qualitative visual assessment, the confirmation holes indicate a reasonable correlation of distribution and grade tenor of mineralization and confirm the presence of local, low-grade mineralization in unsampled historically drilled areas. No underground openings were intersected during the program.



Figure 12-10: Confirmation Hole SD-18-229



Figure 12-11: Confirmation Hole SD-18-231



Figure 12-12: Confirmation Hole SD-18-238

The confirmation holes were not designed to be "twinned" with any other specific holes; and therefore, no direct assay comparisons or statistical analyses were completed. It is expected that there will be grade variability between current and historical data due to differences in core size, sampling procedures, analytical techniques, drilling orientations, and the highly strained nature of the deposit that can result in highly variable gold distribution over short distances.

# 12.2 Definition of 2019 Metallurgical Composite Samples

Metallurgical testing in 2019 considered eleven (11) separate composite samples identified as RPX-1 to RPX-11. The spatial orientation and zonation details for respective samples is summarized in Table 12-5.

#### Table 12-5: 2019 Metallurgical Testing Composite Sample Details

|        | Composite Grade |           |       |       |        |     |        |        | _                                        |
|--------|-----------------|-----------|-------|-------|--------|-----|--------|--------|------------------------------------------|
| Sample | Deposit         | DDH       | From  | То    | Au g/t | %S  | Cu ppm | As ppm | Zone                                     |
| RPX-1  | Minto           | SD-17-74  | 107.6 | 109.3 | 7.9    | 1.7 | 455    | 4      | Shallow Minto Zone                       |
| RPX-2  | Minto           | SD-17-90  | 167.0 | 170.2 | 9.9    | 2.7 | 1,669  | 9      | Main zone of Minto Mine South            |
| RPX-3  | Minto           | SD-17-106 | 136.6 | 144.5 | 7.5    | 1.3 | 603    | 21     | Minto Mine South deeper extension        |
| RPX-4  | Surluga         | SD-17-172 | 72.6  | 80.6  | 4.9    | 0.6 | 37     | 7      | Jubilee Mine Zone of the Surluga Deposit |
| RPX-5  | Surluga         | SD-18-229 | 262.6 | 284.0 | 4.0    | 1.0 | 141    | 352    | 65 zone of the Surluga Deposit           |
| RPX-6  | Surluga         | SD-18-235 | 285.2 | 296.7 | 4.2    | 1.3 | 69     | 3,321  | 65 zone of the Surluga Deposit           |
| RPX-7  | Surluga         | SD-18-236 | 315.8 | 324.6 | 4.3    | 1.4 | 230    | 54     | 65 zone of the Surluga Deposit           |
| RPX-8  | Surluga         | SD-18-237 | 278.8 | 281.4 | 6.3    | 0.8 | 48     | 3,051  | Pango zone of the Surluga Deposit        |
| RPX-9  | Surluga         | SD-18-238 | 177.3 | 182.4 | 12.1   | 1.0 | 42     | 3,276  | Surluga Zone of the Surluga deposit      |
| RPX-10 | Surluga         | SD-18-241 | 148.6 | 167.5 | 4.9    | 0.7 | 71     | 312    | Jubilee Zone of the Surluga Deposit      |
| RPX-11 | Surluga         | SD-18-258 | 263.1 | 269.8 | 4.7    | 0.7 | 102    | 39     | Old Tom Zone of the Surluga Deposit      |

For testwork completed at McClelland Labs in Sparks, NV

The selection of metallurgical composite samples for testing was pursued with guidance by Jean-Francois Montreuil of Red Pine Pine Exploration, and provided a reasonable cross section of respective zones, at variable Au head grade, sulphide, and arsenopyrite content. The recalculated head grades from 2019 metallurgical testwork was found to be reasonably close to, and in agreement with expected head grades based on drill core data.

During a May 2023 site visit, the metallurgical QP, Steve Haggarty, was able to inspect and witness the in-situ mineralization associated with RPX-2, 3, 4, 7, 8, 9, and 11. The mineralization and style of deportment as described for the project was confirmed by the site visit and supports the direction and methodology for metallurgical processing concepts and testing previously pursued.

# **12.3 Conclusions and Recommendations**

On completion of the data verification process for the Wawa Gold Project (Surluga and Minto Mine), it is the QP's opinion that the geological data collection, analytical methods, and QA/QC procedures used by Red Pine are consistent with CIM best practice guidelines. The recent addition of field duplicates in Minto Style mineralization to the QA/QC procedures will aid in characterizing the effects of coarse (nuggety) gold.

The historical drill hole assay database could not be directly verified by the QP as Red Pine does not have the assay certificates. It should be expected, however, that there will be variability between current and historical assay data due to differences in core size, sampling procedures, analytical techniques, drilling orientations and the highly strained nature of the deposit that results in variable gold distribution over short distances.

The 2018 confirmation drill program completed at Surluga provided spot checks of the historical data distributed throughout the deposit that corroborated the presence of mineralization, including the approximate distribution and tenor of mineralization as well as the absence of mining voids.

The QP finds that there is poor to marginal precision with respect to verification sampling of current and historical core which is interpreted to be the result of the presence of coarse gold and volume variance between half core and quarter core samples. The QP recommends continuing to catalogue the rescued historical core. Create a program of verification sampling in the historical core where 4%-5% of core within the resource envelope are duplicate sampled. Future drill assay samples should designate one side or the other of the core cut line to reduce any potential bias.

It is the QP's opinion that Red Pine has done a reasonable job trying to validate and improve the confidence of the historical data, and that the geological database is of suitable quality to support the 2019 Mineral Resource estimate, as reported in Item 14.0.

## 13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

During the summer of 2019, Red Pine commissioned McClelland Laboratories Inc., located in Sparks, Nevada, to determine the amenability of 11 samples from the Surluga and Minto Mine South deposits to cyanidation and flotation treatment. Of the 11 samples, 3 were from the Minto Mine South Deposit and 8 were from different zones of the Surluga Deposit. Results from the study were received by Red Pine on August 22, 2019.

## 13.1 Selection of Metallurgical Samples

#### 13.1.1 Mineralization styles in the Surluga and Minto Mine South Deposits

In the Surluga deposit, gold mineralization principally occurs as arrays of quartz veins of different thickness associated with pyrite as the main sulphide (pyrite-dominant mineralization). Accessory to absent pyrrhotite and arsenopyrite, and minor to absent chalcopyrite, occasional native gold, sphalerite, and galena complete the main mineral assemblage. Pyrite-dominant mineralization is absent from the Minto Mine South deposit. Petrographic and laser-ablation ICP-MS work conducted on that mineralization assemblage indicates that gold is principally occurring as free native gold, coating the iron sulphides with a possible minor fraction of gold hosted either as inclusions, or solid solution, in some pyrite (Wehrle, 2020).

In the Minto Mine South deposit, and in certain zones of the Surluga deposit, gold mineralization is associated with quartz-tourmaline veins with variable pyrite, accessory pyrrhotite, minor to trace chalcopyrite, common native gold and minor to absent gold-bismuth alloys (e.g., maldonite – Au<sub>2</sub>Bi), native bismuth, and bismuthinite (Wehrle, 2020; Minto mineralization). In the Surluga Deposit, Minto mineralization is typically blended with Py-dominant and Apy-dominant mineralization and is observed to postdate both mineralization types.

A third style of gold mineralization has arsenopyrite as the main sulphide (arsenopyrite-dominant). It occurs as variably preserved relicts in the resource of the Surluga deposit and is absent from the Minto Mine South deposit. Where observed in the Surluga deposit, it occurs as extremely deformed arsenopyrite-bearing schists with, or without, strong quartz veining. Within the Surluga deposit, primary arsenopyrite-dominant mineralization tends to be spatially restricted to discrete zones and is more commonly blended as an accessory to minor component in larger zones formed principally by pyrite-dominant with accessory to absent Minto mineralization. Petrographic work indicates that both the Py-dominant and Minto mineralization types are overprinting Apy-dominant mineralization.

Petrographic and laser-ablation ICP-MS work conducted on the arsenopyrite-dominant mineralization type was performed in 2019 and 2020 at the University of Windsor (Ontario) as part of a Master's thesis on the Wawa Gold Project (see Wehrle, 2020). For the arsenopyrite-dominant mineralization, this work suggests that the deportment of gold is variable and is controlled by the intensity of fluid-rock interactions following the precipitation of an early gold-rich arsenopyrite (see Wehrle, 2020). In samples taken in zones of arsenopyrite-dominant mineralization without extensive fluid-rocks interactions post-deposition of the gold-rich arsenopyrite, gold is mainly deported in solid solution, or as very fine inclusions in arsenopyrite, and very rarely as native gold. In samples in which low to moderate levels of fluid-rock interactions occurred post-deposition of the gold-bearing arsenopyrite, the early gold-bearing arsenopyrite is variably recrystallized by cycles of coupled-dissolution-precipitation that have liberated some of the gold from the arsenopyrite. Gold in these samples is deported as occasional native gold and in solid solution, or micro-inclusions, in arsenopyrite. In samples affected by strong to intense fluid-rock interactions post precipitation of the gold-bearing affecting the gold-bearing arsenopyrite have completely leached gold out of the arsenopyrite, which is devoid of gold, and precipitated gold present is as native gold.

The petrographic observations conducted on the arsenopyrite forming the arsenopyrite-dominant mineralization of the Surluga deposit indicate that the sole presence of arsenopyrite may not be an accurate proxy for the metallurgical behavior of that material. Targeted petrographic work or the possible use of geochemical pathfinders will be necessary to appropriately prognosticate the metallurgical response of arsenopyrite-dominant mineralization in the Surluga Deposit and other mineralized structures of the Wawa Gold Project.

#### 13.1.2 Selected Metallurgical Samples in the Surluga and Minto Mine South Deposits

The samples sent for metallurgical testing were composites made from three (3) to 22 individual core samples prepared by quartering half HQ-sized core. The composite samples sent for metallurgical testing were selected to provide a compositional approximation of the higher-grade cores of the mineralized structures and of the compositional variability of gold mineralization between different zones of the deposit.

Three (3) samples from the Minto Mine South deposit were selected to characterize Minto mineralization. The metallurgical attributes of the Minto mineralization in the Surluga Deposit were considered to be represented by the samples used for the Minto Mine South Deposit due to their compositional similarities, in terms of sulphide assemblage, gangue mineral composition, and bulk chemistry. Five (5) samples were selected in the Surluga Deposit to represent a blend of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization to characterize the most likely metallurgical behavior of gold mineralization during production from the higher-grade zones of the deposit. Three (3) samples were also specifically selected to characterize the metallurgical behavior of primary arsenopyrite mineralization that is locally preserved in discrete zones of the Surluga Deposit.

# 13.2 Sample Preparation and Head Analysis

Note that content for this Item is from the McClelland Laboratories, Inc., August 22, 2019, report, titled "Report on Q2 2019 Metallurgical Studies – Surluga/Minto Composite Samples," by Jared R. Olson.

On April 16, 2019, eleven samples of quarter sawn drill core were received from the Surluga project for analysis and testing. The samples were labelled as RPX-1 through RPX-11 and weighed 2 kg to 37 kg.

Each sample was crushed to nominal 10 mm. The 10-mm material was then blended and split using a riffle, or rotary, type splitter to obtain approximately 5 kg for crushing to 100%-1.7 mm. In the case of the two samples that weighed less than 5 kg (RPX-1 and RPX-8), the samples were crushed entirely to -1.7 mm. The -1.7-mm material was blended and split using a rotary type of splitter to obtain four replicate samples (typically 1.25 kg each).

One of the replicate splits of the -1.7-mm material was used to determine a batch ball mill grind time for grinding to an 80%-75µm feed size. This split was ground in a laboratory steel ball mill. Grinding was periodically stopped, and the material was screened to determine approximate percent passing 75µm. Plus and minus 75µm was dewatered and returned to the mill for additional grinding. The process was repeated until an 80%-75µm size was reached, and the required grind time was determined.

One of the replicate splits from each sample was further split to obtain duplicate 100-g splits for head analysis. Each of these splits was analyzed for gold and silver content by conventional fire assay fusion procedures. One of the duplicate splits from each sample was also used for an ICP metals scan and for sulphide sulphur analysis.

Gold and silver head assay results and head grade comparisons are presented in Table 13-1 and Table 13-2, respectively. Sulphide sulphur analysis results are provided in Table 13-3.

| Au (g/t) |         |           |           |        |         |           |                      |  |  |  |  |  |
|----------|---------|-----------|-----------|--------|---------|-----------|----------------------|--|--|--|--|--|
| Sampla   | Direc   | t Assay   | Calculate | d Head | Average | Standard  | Relative<br>Standard |  |  |  |  |  |
| Sample   | Initial | Duplicate | CN        | Flot.  | Average | Deviation | Dev. %               |  |  |  |  |  |
| RPX-1    | 10.4    | 7.25      | 7.31      | 6.36   | 7.83    | 1.77      | 22.6                 |  |  |  |  |  |
| RPX-2    | 3.44    | 7.68      | 4.51      | 4.85   | 5.12    | 1.81      | 35.4                 |  |  |  |  |  |
| RPX-3    | 5.65    | 8.78      | 2.82      | 9.46   | 6.68    | 3.06      | 45.8                 |  |  |  |  |  |
| RPX-4    | 3.61    | 4.2       | 7.82      | 4.44   | 5.02    | 1.9       | 37.8                 |  |  |  |  |  |
| RPX-5    | 4.31    | 3.78      | 4         | 4.99   | 4.27    | 0.53      | 12.4                 |  |  |  |  |  |
| RPX-6    | 4.49    | 5.4       | 4.72      | 5.11   | 4.93    | 0.4       | 8.1                  |  |  |  |  |  |
| RPX-7    | 2.82    | 2.39      | 2.86      | 3.12   | 2.8     | 0.3       | 10.7                 |  |  |  |  |  |
| RPX-8    | 5.69    | 5.51      | 6.19      | 6.77   | 6.04    | 0.56      | 9.3                  |  |  |  |  |  |
| RPX-9    | 13.6    | 10.9      | 9.92      | 13.3   | 11.9    | 1.8       | 15.1                 |  |  |  |  |  |
| RPX-10   | 4.14    | 4.49      | 4.68      | 6.03   | 4.83    | 0.83      | 17.2                 |  |  |  |  |  |
| RPX-11   | 2.79    | 2.48      | 2.54      | 3.05   | 2.72    | 0.26      | 9.6                  |  |  |  |  |  |

#### Table 13-1: Gold Head Assay Results and Head Grade Comparisons, Surluga/Minto Composite Samples

#### Table 13-2: Silver Head Assay Results and Head Grade Comparisons, Surluga/Minto Composite Samples

| Ag (g/t) |              |           |                 |       |         |
|----------|--------------|-----------|-----------------|-------|---------|
| Sample   | Direct Assay |           | Calculated Head |       | Avorago |
|          | Initial      | Duplicate | CN              | Flot. | Average |
| RPX-1    | 0.5          | 0.3       | <0.6            | <0.5  | 0.5     |
| RPX-2    | 0.4          | 0.8       | 0.6             | <0.9  | 0.7     |
| RPX-3    | 0.3          | 0.4       | <0.3            | <0.9  | 0.5     |
| RPX-4    | 0.4          | 0.4       | <0.6            | 0.4   | 0.5     |
| RPX-5    | 0.5          | 0.5       | 0.4             | 0.5   | 0.5     |
| RPX-6    | 0.4          | 0.7       | 0.4             | <0.5  | 0.5     |
| RPX-7    | 0.4          | 0.3       | <0.2            | <0.4  | 0.3     |
| RPX-8    | 0.1          | 0.1       | 0.4             | <0.3  | 0.2     |
| RPX-9    | 5.1          | 2.8       | 6.9             | <5.8  | 5.1     |
| RPX-10   | 0.6          | 0.5       | 0.6             | 0.8   | 0.6     |
| RPX-11   | 0.3          | 0.4       | 0.4             | 0.4   | 0.4     |

Average gold head grades ranged from 2.72 to 11.9 g/t Au. Head grade agreement was good for samples RPX-6, 8, and 11. Gold head grade relative standard deviation in these was less than 10%. Otherwise, head grade agreement generally was poor. Head grade agreement was notably poor for sample RPX-3. Relative standard deviation for this sample was 45.8%. During flotation test of this sample, 41% of the contained gold was collected in the metallic fraction suggesting that this sample contained a substantial amount of coarse particulate gold. It is expected that the poor head grade agreement observed for this sample, and potentially for other Surluga/Minto composite samples, is due to a "nugget effect" caused by the presence of coarse particulate gold.

Average silver head grades generally ranged from 0.2 to 0.7 g/t Ag. Average grade was somewhat higher for sample RPX-9 (5.1 g/t Ag).
| Sample | % Sulphide S |
|--------|--------------|
| RPX-1  | 0.63         |
| RPX-2  | 2.78         |
| RPX-3  | 0.6          |
| RPX-4  | 0.56         |
| RPX-5  | 0.77         |
| RPX-6  | 1.39         |
| RPX-7  | 1.14         |
| RPX-8  | 0.67         |
| RPX-9  | 0.6          |
| RPX-10 | 0.56         |
| RPX-11 | 0.67         |

#### Table 13-3: Sulphide Sulphur Analysis Results, Surluga/Minto Composite Samples

Sulphide sulphur grades were very similar for 8 of the 11 samples and ranged from 0.56% to 0.77%. Grades were somewhat higher for samples RPX-2, 6, and 7, and ranged from 1.14% to 2.78%.

A detailed correlation analysis was conducted to compare head analysis results to cyanidation recoveries, cyanidation reagent requirements, flotation recoveries, flotation mass pull, and gold and silver grades. It was noted that cyanidation gold recoveries were inversely correlated to arsenic concentration. It was also noted that cyanide consumption increased with increasing iron concentration and flotation mass pull increased with increasing sulphide sulphur content.

### 13.2.1 Agitated Cyanidation Testing Procedures and Results

Agitated CIL cyanidation bottle roll tests were conducted on each of the 11 Surluga/Minto composite samples to determine gold and silver recoveries and reagent requirements. Following the leach cycle, slurries were screened to recover the metallic fraction which was assayed separately from the remaining tails. This was done to capture any residual gravity recoverable gold. Tests were conducted at an 80%-75 µm feed size with a 32-hour leach cycle.

Splits from each sample (typically 1.25 kg) were batch ground in a mild steel ball mill using the grind times previously determined, to produce an 80%-75 µm feed for leaching. In addition to normal quality control procedures to prevent sample cross-contamination, composites were ground in order of increasing estimated gold grade. Following each composite, the ball mill was cleaned by grinding barren silica sand. The sand was dried, weighed, and assayed to determine gold losses to the ball mill. Assay results showed that 0.1% to 1.5% (0.5% average) of the gold contained in a given sample was lost to the ball mill.

Slurries were settled in grinding water and decanted, as needed, to reach 40% solids. Natural slurry pH was measured, and lime was added to adjust the slurry pH to 10.0. Sodium cyanide, equivalent to 2.0 g NaCN/L of solution, was then added to each alkaline slurry. Pretreated activated carbon, equivalent to 20 g carbon/L slurry, was added immediately before the initial cyanide addition. The activated carbon was pretreated by attritting and soaking in a barren cyanide solution for 6 hours before use.

Leaching was conducted by rolling the slurries in bottles on laboratory rolls for 32 hours. Rolling was suspended briefly after 2, 6, and 16 hours so samples of pregnant solution could be taken for gold and silver analysis by ICP methods. Slurry D.O. levels were measured. Pregnant solution volumes were measured and sampled. Cyanide

concentration and pH were determined for each solution. Make-up water, equivalent to that withdrawn was added to the slurries. Cyanide concentration in CIL tests were allowed to decrease naturally with cyanide addition only to make-up for cyanide removed in the analytical samples. Lime was added when necessary to maintain the leaching pH at between 9.8 and 10.2.

After 32 hours, CIL bottle roll tests were interrupted. Final pregnant solution volumes were measured and sampled for gold and sliver analysis. Final pH and cyanide concentrations were determined.

Slurries were screened to recover loaded carbon. After carbon removal, the slurries were additionally screened at 150 mesh (100  $\mu$ m) to recover any coarse particulate gold (metallics fraction). Loaded carbon, metallic fraction, and remaining leached residue were washed, dried, weighed, and assayed to determine precious metal content. The leached residues were assayed in triplicate. The metallics fractions were assayed to extinction.

Overall metallurgical results from the agitated leach tests are presented in Table 13-4 and Table 13-5.

| Table 13-4: Overall Metallurgical Results, Agitated | Cyanidation Tests | , Surluga/Minto | Composite S | Samples, |
|-----------------------------------------------------|-------------------|-----------------|-------------|----------|
| 80%-75μm Feed Size                                  |                   |                 |             |          |

| Composite:<br>Metallurgical Results | RPX-1<br>CY-9 | RPX-2<br>CY-10 | RPX-3<br>CY-8 | RPX-4<br>CY-6 | RPX-5<br>CY-4 | RPX-6<br>CY-1 |
|-------------------------------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Recovery: % of total Au             |               |                |               |               |               |               |
| Loaded Carbon                       | 94.7          | 97.6           | 93.6          | 93.7          | 84.8          | 48.5          |
| Metallics Fraction                  | 0             | 0              | 0.4           | 0.8           | 0.5           | 0.4           |
| Total                               | 94.7          | 97.6           | 94            | 94.5          | 85.3          | 48.9          |
| Extracted (Carbon), g/t Au          | 6.92          | 4.4            | 2.64          | 7.33          | 3.39          | 2.29          |
| Extracted (Metallics), g/t Au       | 0             | 0              | 0.01          | 0.06          | 0.02          | 0.02          |
| Total Extracted, g/t Au             | 6.92          | 4.4            | 2.65          | 7.39          | 3.41          | 2.31          |
| Tail assay, g/t Au <sup>1)</sup>    | 0.39          | 0.11           | 0.17          | 0.43          | 0.59          | 2.41          |
| Calculated Head, g/t Au             | 7.31          | 4.51           | 2.82          | 7.82          | 4             | 4.72          |
| Average Head, g/t Au <sup>2</sup> ) | 7.83          | 5.12           | 6.68          | 5.02          | 4.27          | 4.93          |
| Recovery: % of total Ag             |               |                |               |               |               |               |
| Loaded Carbon                       | >50.0         | 50             | >66.7         | >66.7         | 75            | 75            |
| Metallics Fraction                  | >33.3         | 16.7           | 0             | >16.7         | 0             | 0             |
| Total                               | >83.3         | 66.7           | >66.7         | >83.3         | 75            | 75            |
| Extracted (Carbon), g/t Ag          | 0.3           | 0.3            | 0.2           | 0.4           | 0.3           | 0.3           |
| Extracted (Metallics), g/t Ag       | 0.2           | 0.1            | 0             | 0.1           | 0             | 0             |
| Total Extracted, g/t Ag             | 0.5           | 0.4            | 0.2           | 0.5           | 0.3           | 0.3           |
| Tail assay, g/t Ag <sup>1)</sup>    | <0.1          | 0.2            | <0.1          | <0.1          | 0.1           | 0.1           |
| Calculated Head, g/t Ag             | <0.6          | 0.6            | <0.3          | <0.6          | 0.4           | 0.4           |
| Average Head, g/t Ag <sup>2</sup> ) | 0.5           | 0.7            | 0.5           | 0.5           | 0.5           | 0.5           |
| NaCN Consumed, kg/mt                | 0.63          | 1.68           | 0.73          | 1.27          | 1.05          | 0.88          |
| Lime Added, kg/mt                   | 0.6           | 0.4            | 0.4           | 0.4           | 0.4           | 0.4           |

Notes:

1) Average of triplicate tail assays.

2) Average of all head grade determinations.

# Table 13-5: Overall Metallurgical Results, Agitated Cyanidation Test, Surluga/Minto Composite Samples, 80%-75μm Feed Size

| Composite:<br>Metallurgical Results | RPX-1<br>CY-9 | RPX-2<br>CY-10 | RPX-3<br>CY-8 | RPX-4<br>CY-6 | RPX-5<br>CY-4 | RPX-6<br>CY-1 |
|-------------------------------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Recovery: % of total Au             |               |                |               |               |               |               |
| Loaded Carbon                       | 94.7          | 97.6           | 93.6          | 93.7          | 84.8          | 48.5          |
| Metallics Fraction                  | 0             | 0              | 0.4           | 0.8           | 0.5           | 0.4           |
| Total                               | 94.7          | 97.6           | 94            | 94.5          | 85.3          | 48.9          |
| Extracted (Carbon), g/t Au          | 6.92          | 4.4            | 2.64          | 7.33          | 3.39          | 2.29          |
| Extracted (Metallics), g/t Au       | 0             | 0              | 0.01          | 0.06          | 0.02          | 0.02          |
| Total Extracted, g/t Au             | 6.92          | 4.4            | 2.65          | 7.39          | 3.41          | 2.31          |
| Tail assay, g/t Au <sup>1)</sup>    | 0.39          | 0.11           | 0.17          | 0.43          | 0.59          | 2.41          |
| Calculated Head, g/t Au             | 7.31          | 4.51           | 2.82          | 7.82          | 4             | 4.72          |
| Average Head, g/t Au <sup>2</sup> ) | 7.83          | 5.12           | 6.68          | 5.02          | 4.27          | 4.93          |
| Recovery: % of total Ag             |               |                |               |               |               |               |
| Loaded Carbon                       | >50.0         | 50             | >66.7         | >66.7         | 75            | 75            |
| Metallics Fraction                  | >33.3         | 16.7           | 0             | >16.7         | 0             | 0             |
| Total                               | >83.3         | 66.7           | >66.7         | >83.3         | 75            | 75            |
| Extracted (Carbon), g/t Ag          | 0.3           | 0.3            | 0.2           | 0.4           | 0.3           | 0.3           |
| Extracted (Metallics), g/t Ag       | 0.2           | 0.1            | 0             | 0.1           | 0             | 0             |
| Total Extracted, g/t Ag             | 0.5           | 0.4            | 0.2           | 0.5           | 0.3           | 0.3           |
| Tail assay, g/t Ag <sup>1)</sup>    | <0.1          | 0.2            | <0.1          | <0.1          | 0.1           | 0.1           |
| Calculated Head, g/t Ag             | <0.6          | 0.6            | <0.3          | <0.6          | 0.4           | 0.4           |
| Average Head, g/t Ag <sup>2</sup> ) | 0.5           | 0.7            | 0.5           | 0.5           | 0.5           | 0.5           |
| NaCN Consumed, kg/mt                | 0.63          | 1.68           | 0.73          | 1.27          | 1.05          | 0.88          |
| Lime Added, kg/mt                   | 0.6           | 0.4            | 0.4           | 0.4           | 0.4           | 0.4           |

Notes:

1) Average of triplicate tail assays.

2) Average of all head grade determinations.

The Surluga/Minto Composite samples generally were readily amenable to CIL cyanidation treatment at the 80%-75 µm feed size. For 9 of the 11 samples, cyanidation gold recovery ranged from 77.7% to 97.6% (average of 90.3%) in 32 hours of leaching. Gold recoveries were notably lower for samples RPX-6 (48.5%) and RPX-8 (55.9%).

Leached residues were screened at 150 mesh (100  $\mu$ m) to capture any metallic gold particles that were not extracted within the 32-hour leach cycle. Results indicate that this "metallics" fraction contained 0.8%, or less (0.3% average), of the total gold contained in the composite samples.

Total silver extractions ranged from 0.1 to 1.9 g/t Ag (average of 0.5 g/t Ag). These extractions are equivalent to 27.5% to >83.3% (average of 69.2%).

Cyanide consumption was moderate to high and ranged from 0.63 to 1.68 kg NaCN/mt (1.06 kg NaCN/mt average). It is likely that cyanide consumption would be somewhat lower during commercial processing of this

material. Results from batch CIL cyanidation testing that are conducted with new carbon, tend to typically overestimate commercial cyanide consumption.

Lime requirements for pH control were uniformly low and ranged from 0.4 to 0.6 kg/mt.

#### 13.2.2 Bulk Sulphide Flotation Testing Procedures and Results

A rougher bulk sulphide flotation test was conducted on each of the 11 Surluga/Minto composite samples at an 80%-75µm feed size to determine response to flotation treatment. Each ground ore charge was screened prior to flotation to recover a metallics fraction which was assayed separately from the flotation products. This was done to remove any coarse metallic gold particles, which would likely be recoverable by gravity concentration.

Splits from each sample (typically 1.25 kg) were batch ground in a steel ball mill, using the grind times previously determined, to produce an 80%-75µm feed for leaching. In addition to normal quality control procedures to prevent sample cross-contamination, composites were ground in order of increasing estimated gold grade. Following each composite, the ball mill was cleaned by grinding barren silica sand. The sand weas dried, weighed, and assayed to determine gold losses to the ball mill. Assay results showed that. 0.2% to 4.6% of the gold contained in a given sample was lost to the ball mill.

Each of the ground slurries was screened at 150 mesh (100  $\mu$ m) to remove gravity recoverable gold, prior to flotation.

Flotation was conducted using a Denver laboratory scale flotation unit at 1,200 rpm. Slurry solids density of the ground ore was adjusted to 33 weight percent solids. Flotation was conducted in 4 stages with 0.015 kg/mt of PAX (potassium amyl xanthate) added at each of stages 1 and 2 and 0.010 kg/mt of AERO 3477 promoter (dithiophosphate) added at each of stages 2 through 4. Total addition of reagents was 0.030 kg/mt PAX and 0.030 kg/mt AERO 3477. MIBC was used as a frother. The slurry was floated at natural pH. The 4 stages of concentrate were combined into a rougher concentrate. The rougher concentrate and rougher tails were each dried, weighed, and assayed to determine residual gold, silver, and sulphide sulphur content. The rougher tails gold and silver assays were conducted in triplicate. The metallic fractions were also assayed for gold and silver content. These fractions were assayed to extinction.

Flotation test results are presented in Table 13-6 through Table 13-16.

Table 13-6: Bulk Sulphide Flotation Concentration Test F-9 Results, Surluga/Minto Composite Sample RPX-1, 80%-75μm Feed Size

|                    |         |                |        | A      |      | Distribution |        |       |        |      |        |
|--------------------|---------|----------------|--------|--------|------|--------------|--------|-------|--------|------|--------|
| Product            | Weight, | Cum. Wt.,<br>% | Assay  |        |      | Au           |        | Ag    |        | % S= |        |
| Metallics Fraction | %       |                | g/t Au | g/t Ag | % S= | %            | Cum. % | %     | Cum. % | %    | Cum. % |
| Metallics Fraction | 0.3     | 0.3            | 334.0  | 47.0   | N/A  | 15.8         | 15.8   | 28.2  | 28.2   | N/A  | N/A    |
| Ro. Conc.          | 3.4     | 3.7            | 142.0  | 7.7    | 12.3 | 75.9         | 91.7   | 52.5  | 80.7   | 71.9 | 71.9   |
| Ro. Tail           | 96.3    | 100            | 0.55   | <0.1   | 0.17 | 8.3          | 100    | <19.3 | 100    | 28.1 | 100    |
| Composite          | 100     |                | 6.36   | <0.5   | 0.58 | 100          |        | 100   |        | 100  |        |

# Table 13-7: Bulk Sulphide Flotation Concentration Test F-10 Results, Surluga/Minto Composite Sample RPX-2, 80%-75µm Feed Size

| Due du et          | Woight |          |        | Accay  |      |      | Distribution |      |        |      |        |  |
|--------------------|--------|----------|--------|--------|------|------|--------------|------|--------|------|--------|--|
| Product            |        | oun. w., | Assay  |        |      | Au   |              | Ag   |        | % S= |        |  |
|                    | /0     | /0       | g/t Au | g/t Ag | % S= | %    | Cum. %       | %    | Cum. % | %    | Cum. % |  |
| Metallics Fraction | 0.6    | 0.6      | 101.0  | 75.0   | N/A  | 12.5 | 12.5         | 48.6 | 48.6   | N/A  | N/A    |  |
| Ro. Conc.          | 9.4    | 10.0     | 43.6   | 4.1    | 22.9 | 84.5 | 97.0         | 41.7 | 90.3   | 84.2 | 84.2   |  |
| Ro. Tail           | 90.0   | 100      | 0.16   | <0.1   | 0.45 | 3.0  | 100          | <9.7 | 100    | 15.8 | 100    |  |
| Composite          | 100    |          | 4.85   | <0.9   | 2.56 | 100  |              | 100  |        | 100  |        |  |

# Table 13-8: Bulk Sulphide Flotation Concentration Test F-8 Results, Surluga/Minto Composite Sample RPX-3, 80%-75 $\mu$ m Feed Size

| Product            | Waight | Cum Mt      | ım. Wt., Assay |        |      | Distribution |        |       |        |      |        |
|--------------------|--------|-------------|----------------|--------|------|--------------|--------|-------|--------|------|--------|
| Product            |        | ouni. vvi., |                |        |      | Au           |        | Ag    |        | % S= |        |
|                    | 70     | 70          | g/t Au         | g/t Ag | % S= | %            | Cum. % | %     | Cum. % | %    | Cum. % |
| Metallics Fraction | 0.9    | 0.9         | 434.0          | 54.0   | N/A  | 41.3         | 41.3   | 54.7  | 54.7   | N/A  | N/A    |
| Ro. Conc.          | 3.9    | 4.8         | 138.0          | 7.9    | 16.4 | 56.9         | 98.2   | 34.6  | 89.3   | 93.1 | 93.1   |
| Ro. Tail           | 95.2   | 100         | 0.18           | <0.1   | 0.05 | 1.8          | 100    | <10.7 | 100    | 6.9  | 100    |
| Composite          | 100    |             | 9.46           | <0.9   | 0.69 | 100          |        | 100   |        | 100  |        |

# Table 13-9: Bulk Sulphide Flotation Concentration Test F-6 Results, Surluga/Minto Composite Sample RPX-4, 80%-75 $\mu$ m Feed Size

|                    | Maight | Cum 14/4 |        | A      |      | Distribution |        |      |        |      |        |
|--------------------|--------|----------|--------|--------|------|--------------|--------|------|--------|------|--------|
| Product            |        |          | Assay  |        |      | Au           |        | Ag   |        | % S= |        |
|                    | 70     | 70       | g/t Au | g/t Ag | % S= | %            | Cum. % | %    | Cum. % | %    | Cum. % |
| Metallics Fraction | 1.1    | 1.1      | 11.5   | <3.0   | N/A  | 2.8          | 2.8    | 8.0  | 8.0    | N/A  | N/A    |
| Ro. Conc.          | 4.5    | 5.6      | 73.2   | 6.3    | 14.1 | 74.2         | 77.0   | 69.0 | 77.0   | 95.7 | 95.7   |
| Ro. Tail           | 94.4   | 100      | 1.08   | 0.1    | 0.03 | 23           | 100    | 23   | 100    | 4.3  | 100    |
| Composite          | 100    |          | 4.44   | 0.4    | 0.66 | 100          |        | 100  |        | 100  |        |

# Table 13-10: Bulk Sulphide Flotation Concentration Test F-4 Results, Surluga/Minto Composite Sample RPX-5, 80%-75μm Feed Size

|                    | 101-1-1-4 | 0         |        | A      |      | Distribution |        |      |        |      |        |
|--------------------|-----------|-----------|--------|--------|------|--------------|--------|------|--------|------|--------|
| Product            | weight,   | cum. wt., | Assay  |        |      | Au           |        | Ag   |        | % S= |        |
|                    | /0        | 70        | g/t Au | g/t Ag | % S= | %            | Cum. % | %    | Cum. % | %    | Cum. % |
| Metallics Fraction | 0.8       | 0.8       | 8.72   | <3     | N/A  | 1.4          | 1.4    | 4.8  | 4.8    | N/A  | N/A    |
| Ro. Conc.          | 3.1       | 3.9       | 139    | 12.2   | 26.0 | 86.3         | 87.7   | 75.9 | 80.7   | 94.4 | 94.4   |
| Ro. Tail           | 96.1      | 100       | 0.64   | 0.1    | 0.05 | 12.3         | 100    | 19.3 | 100    | 5.6  | 100    |
| Composite          | 100       |           | 4.99   | 0.5    | 0.85 | 100          |        | 100  |        | 100  |        |

# Table 13-11: Bulk Sulphide Flotation Concentration Test F-1 Results, Surluga/Minto Composite Sample RPX-6, 80%-75µm Feed Size

| Product            | Maight                | Cum 14/4      |        | Assav  |      |      | Distribution |       |        |      |        |
|--------------------|-----------------------|---------------|--------|--------|------|------|--------------|-------|--------|------|--------|
| Product            | weight,               | Cum. ₩.,<br>% | Assay  |        |      | Au   |              | Ag    |        | % S= |        |
|                    | etallice Fraction 0.5 | 70            | g/t Au | g/t Ag | % S= | %    | Cum. %       | %     | Cum. % | %    | Cum. % |
| Metallics Fraction | 0.5                   | 0.5           | 4.66   | 4.0    | N/A  | 0.5  | 0.5          | 3.9   | 3.9    | N/A  | N/A    |
| Ro. Conc.          | 8.0                   | 8.5           | 59.5   | 5.0    | 15.9 | 93.1 | 93.6         | 78.2  | 82.1   | 95.9 | 95.9   |
| Ro. Tail           | 91.5                  | 100           | 0.36   | <0.1   | 0.06 | 6.4  | 100          | <17.9 | 100    | 4.1  | 100    |
| Composite          | 100                   |               | 5.11   | <0.5   | 1.33 | 100  |              | 100   |        | 100  |        |

| Table 13-12: Bulk Sulphide Flotation Concentration | Test F-3 Results, Surluga/Minto Composite Sample |
|----------------------------------------------------|--------------------------------------------------|
| RPX-7, 80%-75μm Feed Size                          |                                                  |

| Product            | Woight  |           |        | Assav  |      | Distribution |        |       |        |      |        |
|--------------------|---------|-----------|--------|--------|------|--------------|--------|-------|--------|------|--------|
| Product            | weight, | 6um. wt., | Assay  |        |      | Au           |        | Ag    |        | % S= |        |
| Metallics Fraction | 70      | 70        | g/t Au | g/t Ag | % S= | %            | Cum. % | %     | Cum. % | %    | Cum. % |
| Metallics Fraction | 0.8     | 0.8       | 10.3   | <3     | N/A  | 2.6          | 2.6    | 6.6   | 6.6    | N/A  | N/A    |
| Ro. Conc.          | 6.5     | 7.3       | 43.1   | 3.8    | 18.0 | 89.9         | 92.5   | 67.9  | 74.5   | 93.3 | 93.3   |
| Ro. Tail           | 92.7    | 100       | 0.25   | <0.1   | 0.09 | 7.5          | 100    | <25.5 | 100    | 6.7  | 100    |
| Composite          | 100     |           | 3.12   | <0.4   | 1.25 | 100          |        | 100   |        | 100  |        |

# Table 13-13: Bulk Sulphide Flotation Concentration Test F-7 Results, Surluga/Minto Composite Sample RPX-8, 80%-75µm Feed Size

|                    | 101-1-1-4 | 0         | Assay  |        |      | Distribution |        |       |        |      |        |
|--------------------|-----------|-----------|--------|--------|------|--------------|--------|-------|--------|------|--------|
| Product            | weight,   | cum. wt., | Assay  |        | Au   |              | Ag     |       | % S=   |      |        |
|                    | 70        | 70        | g/t Au | g/t Ag | % S= | %            | Cum. % | %     | Cum. % | %    | Cum. % |
| Metallics Fraction | 1.1       | 1.1       | 6.12   | <3.0   | N/A  | 1.0          | 1.0    | 11.8  | 11.8   | N/A  | N/A    |
| Ro. Conc.          | 4.6       | 5.7       | 136    | 3.3    | 14.7 | 92.4         | 93.4   | 54.4  | 66.2   | 96.0 | 96.0   |
| Ro. Tail           | 94.3      | 100       | 0.47   | <0.1   | 0.03 | 6.6          | 100    | <33.8 | 100    | 4.0  | 100    |
| Composite          | 100       |           | 6.77   | <0.3   | 0.7  | 100          |        | 100   |        | 100  |        |

# Table 13-14: Bulk Sulphide Flotation Concentration Test F-11 Results, Surluga/Minto Composite Sample RPX-9, 80%-75 $\mu$ m Feed Size

|                    | Maight | Cum 14/4 |        | Assav  |      |      | Distribution |      |        |      |        |  |
|--------------------|--------|----------|--------|--------|------|------|--------------|------|--------|------|--------|--|
| Product            |        |          |        | Assay  |      | A    | ۸u           | A    | ١g     | %    | S=     |  |
|                    | 70     | 70       | g/t Au | g/t Ag | % S= | %    | Cum. %       | %    | Cum. % | %    | Cum. % |  |
| Metallics Fraction | 0.4    | 0.4      | 88.6   | 70     | N/A  | 2.7  | 2.7          | 4.9  | 4.9    | N/A  | N/A    |  |
| Ro. Conc.          | 5.1    | 5.5      | 236    | 106    | 18.1 | 90.2 | 92.9         | 93.5 | 98.4   | 95.1 | 95.1   |  |
| Ro. Tail           | 94.5   | 100      | 1.0    | <0.1   | 0.05 | 7.1  | 100          | <1.6 | 100    | 4.9  | 100    |  |
| Composite          | 100    |          | 13.3   | <5.8   | 0.97 | 100  |              | 100  |        | 100  |        |  |

# Table 13-15: Bulk Sulphide Flotation Concentration Test F-2 Results, Surluga/Minto Composite Sample RPX-10, 80%-75µm Feed Size

|                    | Mainh4  | 0              |        | Accov  |      | Distribution |        |      |        |      |        |
|--------------------|---------|----------------|--------|--------|------|--------------|--------|------|--------|------|--------|
| Product            | weight, | Cum. wt.,<br>% |        | Assay  |      | ļ            | ۱u     | A    | ١g     | %    | S=     |
|                    | 70      | ,0             | g/t Au | g/t Ag | % S= | %            | Cum. % | %    | Cum. % | %    | Cum. % |
| Metallics Fraction | 1.0     | 1.0            | 26.6   | 11     | N/A  | 4.4          | 4.4    | 13.9 | 13.9   | N/A  | N/A    |
| Ro. Conc.          | 3.9     | 4.9            | 135    | 15     | 14.7 | 87.4         | 91.8   | 74   | 87.9   | 95.3 | 95.3   |
| Ro. Tail           | 95.1    | 100            | 0.52   | 0.1    | 0.03 | 8.2          | 100    | 12.1 | 100    | 4.7  | 100    |
| Composite          | 100     |                | 6.03   | 0.8    | 0.6  | 100          |        | 100  |        | 100  |        |

# Table 13-16: Bulk Sulphide Flotation Concentration Test F-5 Results, Surluga/Minto Composite Sample RPX-11, 80%-75 $\mu$ m Feed Size

|                    | Wajaht  | Cum 14/4  |        | Assav  |      |      | Distribution |      |        |      |        |  |
|--------------------|---------|-----------|--------|--------|------|------|--------------|------|--------|------|--------|--|
| Product            | weight, | oum. wt., |        | Assay  |      | Au   |              | Ag   |        | % S= |        |  |
|                    | 70      | 70        | g/t Au | g/t Ag | % S= | %    | Cum. %       | %    | Cum. % | %    | Cum. % |  |
| Metallics Fraction | 0.6     | 0.6       | 12.6   | <3.0   | N/A  | 2.5  | 2.5          | 4.3  | 4.3    | N/A  | N/A    |  |
| Ro. Conc.          | 4.5     | 5.1       | 55.2   | 6.7    | 15.1 | 81.3 | 83.8         | 72.8 | 77.1   | 96.0 | 96.0   |  |
| Ro. Tail           | 94.9    | 100       | 0.52   | 0.1    | 0.03 | 16.2 | 100          | 22.9 | 100    | 4.0  | 100    |  |
| Composite          | 100     |           | 3.05   | 0.4    | 0.71 | 100  |              | 100  |        | 100  |        |  |

Results show that significant portions of the gold contained in composites RPX-1, 2, and 3 were captured in the metallics fraction removed by screening flotation feed. The metallics fraction from these three composites represented 15.8%, 12.5%, and 41.3%, respectively, of the gold contained in these samples. For the 8 remaining composites, gold recoveries to the metallics fraction ranged from 0.5% to 4.4% (average 2.2%). The metallics fraction weights ranged from 0.3% to 1.1% of the total feed weight.

The Surluga/Minto composites generally responded very favorably to bulk sulphide flotation treatment. Combined gold recoveries to the rougher flotation concentrate and the metallics fraction ranged from 77.0% to 98.2% and averaged 90.9%. Rougher concentrate gold grades ranged from 43.1 to 236 g/t Au.

Rougher flotation concentrate weights were low for 8 of the 11 composites and were equivalent to between 3.1% and 5.1% of the feed weigh (average of 4.1%). Rougher concentrate weights were somewhat higher for composites RPX-2, 6, and 7. In these cases, the rougher concentrate weights were equivalent to 9.4%, 8.0%, and 6.5%, respectively, of the feed weight. These three composites all had elevated sulphide sulphur content. As described previously, flotation concentration mass pull increased with increasing sulphide sulphur content.

Sulphide sulphur recoveries to the flotation rougher concentrate generally ranged from 93.1% to 96.0%. Sulphide sulphur recovery was somewhat lower for composite RPX-1 (71.9%) and RPX-2 (84.2%). Both of these composites gave reasonably high gold recovery.

Flotation was also effective for recovering silver. Rougher tailings silver grades were all 0.1 g/t Ag, or less.

#### 13.2.3 Conclusions

The results indicate the following:

- The Surluga/Minto composites generally were readily amenable to whole ore CIL cyanidation treatment at an 80%-75 μm feed size. For 9 of the 11 composites, cyanidation gold recoveries averaged 90.3% in 32 hours of leaching.
- Composites RPX-6 and RPX-8 were not amenable to CIL cyanidation at the 75µm size. Recoveries from these composites were 48.5% and 55.9%, respectively.
- The low recoveries from samples RPX-6 and RPX-8 are thought to be related to the elevated arsenic content of those composites and the refractory nature of sulphides with disseminated, or solid solution, gold.
- Cyanide consumption during CIL cyanidation was moderate to high.
- Lime requirements for pH control during cyanidation were uniformly low.
- The Surluga/Minto composites responded favorably to bulk sulphide flotation concentration treatment with removal of gravity recoverable gold (metallics fraction) before flotation. Gold recoveries to the combined metallics and flotation concentrates ranged from 77.0% to 98.2% (average 90.9%).
- Rougher flotation mass pulls generally were low and averaged 5.2% of the feed weight.
- Results indicated that significant portions of the gold contained in composites RPX-1, 2, and 3 were captured by classifying flotation feed at 150 mesh (100 μm) to simulate gravity concentration. By comparing these results to the metallic fractions captured following cyanidation, it can be inferred that the majority of the gold in the +100 μm fractions would be expected as recoverable by cyanidation.

# 13.3 Interpretations, Conclusions and Recommendations13.3.1 CIL cyanidation

Samples representative of the main zones of mineralization in the Surluga and Minto Mine South deposits generally were readily amenable to CIL cyanidation treatment at the 80%-75 µm feed size. For the 3 samples representative of Minto mineralization, CIL cyanidation and gravity recoverable gold average of 95.4%. For the 5 samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization types in the Surluga Deposit, CIL cyanidation and gravity recoverable gold average 90.3%.

The 3 samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit yielded a range of CIL cyanidation and gravity recoveries between 48.9% to 78.2% (average of 61.2%). The range in gold recovery by CIL cyanidation for the arsenopyrite-dominant mineralization type corresponds to the petrographic observations on the deportment of gold for that mineralization style. For the metallurgical study, the sample selection was completed prior to the petrographic work, which precluded the sampling of the full range of mineralogical textures of arsenopyrite indicative of different intensity of fluid-rock interactions. The sample selection, based uniquely on the presence or absence of arsenopyrite, may not be completely representative of the variability of the of fluid-rock interactions that affected this type of mineralization in the Surluga deposit.

#### 13.3.2 Flotation

Samples representative of the main zones of mineralization in the Surluga and Minto Mine South deposits were amenable to gravity recovery and bulk sulphide flotation at the 80%-75  $\mu$ m feed size. For the three (3) samples representative of Minto mineralization, bulk sulphide flotation and gravity recoverable gold averaged 95.6%. For the 5 samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity recoverable gold averaged 86.6 %. For the 3 samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity.

### 13.3.3 Conclusions

The results indicate the following:

- CIL cyanidation and gravity recoverable gold average of 90.3% for representative blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization forming the bulk of the resource of the Surluga Deposit.
- CIL cyanidation and gravity recoverable gold average of 95.4% for Minto mineralization forming the Minto Mine South deposit and locally present in the Surluga Deposit.
- Cyanide consumption during CIL cyanidation was moderate to high.
- Lime requirements for pH control during cyanidation were uniformly low.
- Flotation and gravity recoverable gold averaged 93.3% for the localized domains of arsenopyrite-dominant mineralization in the Surluga Deposit.
- Rougher flotation mass pulls generally were low and averaged 5.2% of the feed weight.

Potential processing alternatives applicable to the Wawa Gold Project are suggested as including:

- v) Whole ore cyanidation applying CIL, which would be applicable to materials lower than a threshold sulphide and arsenopyrite concentration, which exhibited lower gold recoveries in test work.
- vi) Gravity concentration followed by sulphide flotation to a third cleaner concentrate, which would be applicable to all material types with products shipped to a third party for hydrometallurgical processing, or smelting.
- i) A hybrid circuit involving gravity concentration, sulphide flotation to a third cleaner concentrate for shipment to a third party for hydrometallurgical processing or smelting, and CIL on the gravity concentrate and flotation tailings. This alternative would be expected as yielding highest possible Au recovery and would be applicable to all material types.
- ii) A circuit involving gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground concentrate and gravity concentrate. This alternative would also be expected as applicable to all material types, yielding reasonably high Au recovery and would require a smaller flotation circuit, and smaller cyanidation circuit.

The positive response of Surluga and Minto Mine South mineralization to conventional, industrially proven processes provides flexibility for project definition, design, and potential treatment of respective material types.

### 13.3.4 Recommendations

Additional metallurgical testwork should be completed on the most challenging suite of mineralization, as well as material at naturally blended grade ranges that would be expected from underground mining. The most applicable process flowsheet would balance the trade-off between CapEx, OpEx, metal recovery, with an overriding factor requiring a demonstrated and viable reclamation and closure plan for permitting.

i) A processing strategy not previously considered could involve gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground rougher concentrate and gravity concentrate. This alternative would be expected as applicable to all material types, yielding reasonably high and consistent Au recovery, would require a smaller flotation circuit, as well as a smaller cyanidation circuit. Following cyanide removal from the sulphide concentrate residue, this process strategy lends itself towards sub-aqueous co-disposal of the sulphidic content in the feed, under a cap of benign low sulphide flotation tailings, to mitigate long term concerns with respect to ARD generation.

Additional work is required to characterize the spatial distribution of the pyrite-dominant, Minto and arsenopyrite-dominant mineralization types in the Surluga Deposit and to define metallurgical domains and approximation of the blends of mineralization styles. This can be achieved with the digitization of the sulphide assemblages recorded in the historical drill logs, and diamond drilling for targeted verification of historical data and for areas of the deposit where the sulphides assemblages were not historically recorded. Diamond drilling will also be required for petrographic studies and metallurgical characterization of arsenopyrite-dominant mineralization identified in the historical drill logs in zones that were not drilled by Red Pine, and for which drill core is not available.

Once this work is completed, additional metallurgical samples representative of the ranges of blends of mineralization types in the Surluga deposit will be tested to refine the characterization of the metallurgical

behavior of the higher-grade zones of the deposit. Additional metallurgical samples of the arsenopyrite-dominant mineralization will be pursued based on the textural attributes of arsenopyrite following the observations made with the petrographic work and laser-ablation ICP-MS work. This sampling will allow a better representation of the full range of metallurgical behavior of arsenopyrite-bearing mineralization based on the variable deportment of gold documented for that mineralization type to support process flowsheet definition.

# 14.0 MINERAL RESOURCE ESTIMATES

The Mineral Resource estimates and other information in this Item are forward-looking information. The factors that could cause actual results to differ materially from the forward-looking information include any significant differences from one or more of the following material factors or assumptions that were applied in drawing the conclusions or making the estimates, forecasts or projections set forth in this Item, including: **the accuracy of historical assay database**, the assumptions used by the QP to prepare the data for resource estimation, the highly structurally deformed nature of the deposit resulting in high grade variability, the presence of narrow Lamprophyre dykes that are typically barren but difficult to interpret, the interpretation of the controlling structural environment and mineral domain models, the selection of grade interpolation method, sample search and estimation parameters used for grade interpolation, treatment of high-grade outlier sample data, continuity of mineralization and factors used to determine reasonable prospects for economic extraction.

The Mineral Resource estimates have not been updated in this technical report due to the limited amount of exploration drilling conducted within the existing resource limits. On review of the most recent exploration data, the QP has determined that there would be no material change to the current Mineral Resource estimate as stated in Item 1.7 and Item 14.0 of this Technical Report.

The QP recommends a review of the Mineral Resource estimate on completion of the 2023 exploration program to determine if updates are required based on new exploration data, historical core sampling, changes in geological interpretation, internal trade-off studies evaluating between potential open pit and underground mining methods, and economic criteria assumptions used to support reasonable prospects for potential economic extraction. The following parts of Item 14.1 have been copied in their entirety from the August 2021 Technical Report, titled "National Instrument 43-101 Technical Report for the Wawa Gold Project" with a Report Effective Date of August 18, 2021, and a Resource Effective Date of May 31, 2019.

# 14.1 Introduction

This Report represents an update to the June 2015 Technical Report, titled "Independent Technical Report; Wawa Gold Project, Ontario" and provides a combined Mineral Resource estimate consisting of the Surluga and Minto Mine South deposits for the Project. The Minto Mine South Mineral Resource estimate was previously disclosed on November 15, 2018, in the news release, titled "Red Pine Announces Initial Mineral Resource Estimate for its Minto Mine South Project" and is supported by the NI 43-101 Technical Report, titled "National Instrument 43-101 Initial Technical Report for the Minto Mine South Property; Report Effective Date: December 31, 2018." No changes have been made to the Minto Mine South Mineral Resource estimate since this time.

The Mineral Resource estimate for the Surluga deposit, has been prepared in accordance with NI 43-101 and following the requirements of Form 43-101F1. The Mineral Resource estimate follows the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines (November 2003) and was classified following CIM Definition Standards for Mineral Resources & Mineral Reserves (May 2014).

The QP for this Mineral Resource estimate is Mr. Brian Thomas, P.Geo., an independent QP, as defined under NI 43-101 and an employee of WSP Inc. based in Sudbury, Ontario, Canada. The effective date of this Mineral Resource estimate is May 31, 2019.

The Mineral Resource estimates outlined in the following sections were derived from geological models and drill hole data provided by Red Pine, using a 3D block modelling approach in Datamine Studio RM (Datamine) software.

# 14.2 Surluga

### 14.2.1 Drill Hole Data

The Mineral Resource estimate is based upon data provided from recent surface diamond drilling, completed by Red Pine, along with historical surface and underground drill hole data from previous owner/operators. The drill hole database consisting of 2,293 drill holes, totalling approximately 190,985 m of core and 86,017 gold assays was made available for modelling on March 20, 2019. The database volume covers the entire Project area including the Surluga and Minto Mine South deposits.

For the purposes of modelling, a subset of the full data was selected from within the Jubilee Shear Zone mineral domain. Within this volume the database consists of 1,812 drill holes totalling 68,141 m of core and 37,271 gold assays.

The database was analyzed for interval errors and out of range values and was reviewed in 3D space to validate the hole locations and de-surveyed hole traces. A minor number of interval issues were identified and resolved.

The recent Red Pine drill hole data is supported by a QA/QC process as described previously in Item 11.0. The QP has also completed independent sample verification and check logging as summarized in Item 12.0 and has not identified any material flaws in the drill hole data or data collection procedures. Red Pine's data collection procedures were found to be consistent with standard industry practice. Approximately 84% of the samples were considered to be historical (legacy) data.

### 14.2.2 Geological Domaining

Red Pine modelled three mineralized shear zone solids, consisting of the Upper Jubilee, Main Jubilee, and Lower Jubilee shears, as outlined in Figure 14-1. These domain solids were modelled based on high shear intensity levels as described in the current and historical drill logs. Mineralization in the Surluga deposit is bound to these shear zones where quartz veins and sulphide mineralization have been highly strained and deformed producing shallowly south plunging rod-like structures, as discussed in Item 7.0. The QP reviewed the shear zone models and trimmed the boundaries to within approximately 80 m of any diamond drill hole. It is the QP's opinion that the shear zone models are reasonably representative of the controls on mineralization observed at the Surluga deposit.



Figure 14-1: Surluga Shear Zones (Oblique View Facing Northeast)

A late Diabase dyke was also modelled and is located in the south end of the deposit and is orientated in a northwest direction. The dyke is not mineralized and was used to outline a waste domain. Many other smaller scale Lamprophyre dykes are also prevalent throughout the deposit. These dykes are generally less than 1m wide and are much more widely dispersed; and therefore, could not be reliably modelled. It would not be possible to selectively mine around these dykes and any potential mining would likely need to include the dyke material, which is generally barren, but locally mineralized. Many of the dyke intervals were sampled and those that were not sampled were assigned a grade of 0.02 g/t within the main shear zone and 0.01 g/t in the Upper and Lower Shear zones.

#### 14.2.3 Historical Database Analysis

The Surluga drill hole database consists predominantly of historical data (84%) that was collected using processes that were undocumented and may not meet today's standards. The database has issues that make resource estimation challenging and call into question the quality of the data. These issues include the use of selective sampling, resulting in a significant amount of unsampled intervals within the mineralized domains, lack of QA/QC controls, smaller core size and no supporting laboratory certificates. As a result of these issues, the previous 2015 Mineral Resource estimate was based on a sample data set where all unsampled intervals were set to a default grade of zero, and the resulting resource classification was limited to the Inferred category.

In order to support the quality and confidence of the historical data, Red Pine conducted a large scale resample program starting in 2016 and completed a confirmation drill hole program in 2018 as previously summarized in Items 9.0, 10.0, and 12.0 of this Report.

The following sections outline the data analysis that the QP completed to better understand the historical data and utilize the new information from Red Pine to support the assumptions and methodologies used to complete the Mineral Resource estimate and should not be considered as verification of the historical sample database.

#### 14.2.3.1 Historical Core Sampling Program

Red Pine sampled approximately 21,416 m of previously unsampled historical core from 525 drill holes that were historically assumed to be uneconomic (barren waste). This data, referred to as Resampled in the following paragraph, provided evidence that not all of the unsampled intervals were barren, as was assumed in the 2015 Mineral Resource estimate.

A total of 51,007 samples were selected within the 2019 geological shear envelopes and flagged as being either Primary (41,298), Resampled (3,467), or Absent samples (6,242). A cumulative log probability plot was used to compare the differences in the grade distributions between these populations, as shown in Figure 14-2.



Figure 14-2: Comparison of Au grade Populations Between Primary Samples (green) and Re-sampled Historical Samples

The probability plot indicates that the selective sample choices, made by the logging geologists at the time, were generally correct when assuming that these intervals were barren and approximately 80% of the resampled population was determined to have a grade of less than 0.1 g/t. However, there was still a portion of the resampled population that was mineralized, and further analysis was required. The resampled data was then combined into stratigraphic groupings based on lithological descriptions, and another cumulative probability plot was generated in order to compare the Au distributions for each stratigraphic rock unit (Figure 14-3).



Figure 14-3: Comparison of Au grade Populations Between Stratigraphic Rock Units in Re-sampled Historical Samples

From this probability plot, it was determined that the Alteration group (blue line), was more mineralized relative to the other stratigraphic units, with approximately 50% of the population having a grade of less than 0.1 g/t as compared to the remaining units having approximately 80% less than 0.1 g/t. Based on this analysis, the QP made the decision to leave the remaining unsampled intervals, that were logged as alteration, as absent data (623 samples). All other unsampled stratigraphic units (5,619 samples) were assigned default values equal to the geometric mean of each unit. The geometric mean was used as a proxy for the median value and is therefore, not influenced by high-grade outliers as would be the case if the mean value was used. Theses default values were assigned by individual shear zone, where 1,529 absent data records in the Upper and Lower Jubilee Shears were

assigned values ranging from detection limits of 0.005 g/t to 0.02 g/t and 4,090 absent data records in the Main Shear were assigned values ranging from 0.005 g/t to 0.08 with 99.5% of those being 0.04 g/t, or less.

## 14.2.3.2 Analysis of Drill hole Data by Date

The QP analyzed the drill hole database to determine if there was any potential bias between the recent and the historical drill hole data. Based on a histogram of drilling dates, the holes were grouped into 3 generations of drilling consisting of; 1), pre 1980; 2), 1980 to 2000; and 3), 2000 to present. A cumulative log probability plot was generated to compare the Au grade distributions of each generation, as shown in Figure 14-4. Unsampled intervals were removed for the purpose of this comparison.



Figure 14-4: Comparison of Au grade Populations Between Drill Generations

The probability plot indicates that the recent generation of drilling (2000 to present) has a lower Au grade population than the historical drill holes (pre-2000), with approximately 90% of the population having a grade of < 1 g/t in the recent population versus 80% of the historical population having grades < 1 g/t in the historical populations. On further inspection of the actual locations of the holes, it was noted that the historical holes are heavily clustered in the higher-grade areas of the deposit, whereas the current holes are widely distributed, as shown in Figure 14-5.



# Figure 14-5: Comparison of Current vs Historical Drill Hole Distributions (Recent Holes Left, Historical Holes Right)

It is the QP's opinion that the closely spaced clustering of historical holes, within the higher-grade areas of the deposit, likely accounts for the majority of differences seen in the grade distributions between the current and historical populations.

In the rest of this Section, the term "raw" data refers to original information as provided by Red Pine. Data which has been processed to treat unsampled intervals is referred to as "processed."

# 14.2.4 Exploratory Data Analysis

# 14.2.4.1 Outlier Analysis

An XY scatterplot of Au grade versus sample length (Figure 14-6) was generated as well as a cumulative probability plot of Au grade. Based on the scatterplot, a top-cut value of 80 g/t was chosen to restrict outlier sample values for the main shear zone and a top-cut of 40 g/t was used for the Upper and Lower Shear zones. No significant breaks were identified from the probability plot. A total of 36 sample values were top-cut in the database.



Figure 14-6: XY Scatterplot of Au Grades (g/t) vs Sample Length (m)

The process of grade capping lowered the mean, length-weighted Au grade of the processed samples from 1.03 g/t to 1 g/t and reduced the coefficient of variation (C.V) from 4.52 to 3.77.

## 14.2.4.2 Compositing

Based on sample length analysis, a composite length of 1 m was chosen. All raw sample intervals were composited to a mean length of 1 m with a minimum sample length of 0.5 m. The global mean Au grades and total sample lengths were compared to ensure that no significant number of samples were lost during the compositing process.

## 14.2.4.3 Descriptive Statistics

The Surluga grade population within the mineralized domain was analyzed using a combination of histogram, XY scatterplot, and descriptive statistics. The Surluga grade population is highly skewed, as observed in Figure 14-7.



Figure 14-7: Histogram of Au Grades (g/t)

Table 14-1 summarizes the descriptive statistics for the populations of raw, processed, capped, and composited sample data that is located within the mineralized shear zone volume, as previously described in Item 14.2.2.

| Table 14-1: Comparison | on of Sample Statistics |
|------------------------|-------------------------|
|------------------------|-------------------------|

| Sample Type | Min. | Max.   | Mean | Medfian | Variance | Std.<br>Deviation | C.V. |
|-------------|------|--------|------|---------|----------|-------------------|------|
| Raw         | 0    | 467.31 | 1.30 | 0.13    | 26.96    | 5.19              | 3.99 |
| Processed   | 0    | 467.31 | 1.02 | 0.03    | 21.32    | 4.62              | 4.52 |
| Capped      | 0    | 80     | 1.00 | 0.03    | 14.12    | 3.76              | 3.77 |
| Composite   | 0    | 80     | 1.00 | 0.03    | 10.30    | 3.21              | 3.21 |

### 14.2.4.4 Bulk Density

A total of 934 density measurements were used to determine a mean density value of 2.75 t/m3 for the Surluga deposit. The QP analyzed the density population by rock type and regionally in various locations but did not identify any material differences. Therefore, the mean density value was assigned to all blocks in the model and was used as the basis for calculating Mineral Resource tonnage. The distribution of samples used for density calculation relative to the Shear Zone mineral envelope was reviewed by the QP and determined to be representative of the deposit.

Density measurements were taken from 10 cm samples from NQ and HQ sized core using the weight in air versus the weight in water method (Archimedes) based on the following formula:

 $SG = \frac{Sample Weight in Air}{Sample Weight in Air - Sample Weight in Water}$ 

A full description of the density measurement process is outlined in Item 11.0.

# 14.2.5 Block Model and Resource Estimation

#### 14.2.5.1 Assessment of Spatial Grade Continuity

A high-level variogram analysis was completed to assess the spatial continuity of grade in the Surluga deposit using a combination of variogram maps and directional variograms. This analysis provided input on the directions of grade continuity and the maximum distances of grade correlation. The variogram analysis was found to be consistent with geological orientations observed in the deposit and those modelled by Red Pine in the Jubilee Shear Zone domains, and confirmed that there is high nugget variability and limited spatial continuity of grade in the deposit. This analysis was used as the basis for the search ellipse distances defined in the estimation search strategy as summarized in Item 14.2.5.4 but was not used for the purpose of assigning Kriging weights to the samples for grade estimation.

#### 14.2.5.2 Block Model Definition

The volume definition for the Surluga block model is summarized in Table 14-2. Block shape and size is typically a function of the geometry of the deposit, density of sample data, and expected smallest mining unit (SMU). On this basis, a parent block size of 2 m (E-W) by 2 m (N-S) by 2 m (Elevation) was chosen.

| Direction | Minimum   | Maximum   | Block Size | No. Blocks |
|-----------|-----------|-----------|------------|------------|
| Easting   | 667,330   | 668,962   | 2          | 816        |
| Northing  | 5,315,250 | 5,318,610 | 2          | 1,680      |
| Elevation | -480      | 420       | 2          | 450        |

#### Table 14-2: Block Model Volume Definition

The shear domain envelopes were filled with blocks using the parameters described in Table 14-2. Block volumes were then compared to the mineral zone volumes to confirm there were no errors during the process. Block volumes for all zones were found to be within reasonable tolerance limits of the mineralization envelope volumes.

#### 14.2.5.3 Interpolation Methods

Inverse Distance cubed (ID<sup>3</sup>) was the grade interpolation method chosen as the basis of the 2019 Surluga Mineral Resource estimate. This method assigns estimation weights to the samples within the search volume relative to the distance of the sample data from the centre of the block. The closer the sample, the higher the weights as described in the following formula where p is defined to the power of 3.

$$v_{1}^{'} = \frac{\sum_{i=1}^{n} \frac{1}{d_{i}^{p}} v_{i}}{\sum_{i=1}^{n} \frac{1}{d_{i}^{p}}}$$

ID<sup>3</sup> was chosen by the QP over Inverse Distance Squared (ID<sup>2</sup>) and Ordinary Kriging (OK) to better control the smoothing of grades, putting more weight on the samples closest to the block, due to the variable nature of the mineralization. Nearest Neighbour (NN), and ID<sup>2</sup> were estimated for global comparison and validation purposes, but not used for final resource reporting. Ordinary Kriging was not assessed during the estimation process.

#### 14.2.5.4 Search Strategy

A 3 pass, elliptical search strategy was utilized based on search distances (radius) of 4 m (across-strike) x 20 m (down-dip) x 40 m (along-strike). Successive search distances were factored (2x & 3x) in the down-dip and downplunge directions while the across strike direction was restricted to a maximum search distance of 6 m. Block estimates were based on a minimum of 5 samples and a maximum of 12 samples with a maximum of 4 samples used per drill hole resulting in a minimum of 2 holes required for each block estimate. A plunge rotation of 25° was used along with Dynamic Anisotropy to account for the grade plunge and minor variations in deposit orientation. Dynamic Anisotropy is a Datamine process used to adjust search orientations based on the shape of a controlling surface, which in this case was the Jubilee Shear Zone mineral domain. General search orientations, defined by dip and dip direction, were estimated into the blocks based on the trends implicit to the mineral domain envelopes.

The search estimation parameters used for grade estimation are summarized in Table 14-3.

| Pass   | Along Strike<br>Search<br>Radius | Down Dip<br>Search<br>Radius | Across Strike<br>(thickness)<br>Search<br>Radius | Min. No. of<br>Samples | Max. No. of<br>Samples | Max No.<br>Samples<br>from Each<br>Hole | Min. No<br>Holes |
|--------|----------------------------------|------------------------------|--------------------------------------------------|------------------------|------------------------|-----------------------------------------|------------------|
| Pass 1 | 40                               | 20                           | 4                                                | 5                      | 12                     | 4                                       |                  |
| Pass 2 | 80                               | 40                           | 6                                                | 5                      | 12                     | 4                                       |                  |
| Pass 3 | 120                              | 60                           | 6                                                | 5                      | 12                     | 4                                       |                  |

| Table 14-3: Search Volume | e Controls Used | l for Au Grade | Estimation |
|---------------------------|-----------------|----------------|------------|
|---------------------------|-----------------|----------------|------------|

## 14.2.5.5 Model Validation

The block model validation process included visual comparisons between block estimates and composite grades in plan, section, and long section along with a global comparison of mean grades and swath plots. Block estimates were visually compared to the drill hole composite data to check agreement.

Figure 14-8 and Figure 14-9 provide comparisons of the composite samples and block model Au estimates in cross-section and long-section views. No material grade bias issues were identified, and the block grades compared well to the composite data.



Figure 14-8: East-West Cross-Section (5,316,450N) Facing North



Figure 14-9: North-South Long-Section (668,400E) Facing West

Global statistical comparisons between the composite samples, NN estimates, ID<sup>2</sup> estimates and the final estimates (ID<sup>3</sup>) for the Surluga Deposit were compared to assess global bias, where the NN model estimates represent de-clustered composite data. Clustering of the drill hole data can result in differences between the global means of the composites and NN estimates. Similar global means of the NN and ID<sup>3</sup> estimates indicate that there is no global grade bias in the model. The results summarized in Table 14-4 indicate that no material global bias was found in the block model.

| Table 14-4: Statistical Con | parison of Global Mean Au | Grades |
|-----------------------------|---------------------------|--------|
|-----------------------------|---------------------------|--------|

| Deposit | Composite Mean<br>(g/t) | NN Mean<br>(g/t) | ID <sup>2</sup> Mean<br>(g/t) | ID <sup>3</sup> Mean<br>(g/t) | Relative<br>Difference<br>(%) |
|---------|-------------------------|------------------|-------------------------------|-------------------------------|-------------------------------|
| Surluga | 1.00                    | 0.31             | 0.33                          | 0.32                          | 3.3                           |

Notes: The comparison is for all blocks in the model irrespective of classification. Relative difference calculated between ID<sup>3</sup> mean and NN mean Au grades. Swath plots of Au grades were generated from slices throughout each zone to evaluate for local grade bias issues. Figure 14-10 provides a longitudinal (N-S) example of the swath plots covering the Surluga block model. The swath plots compare the ID<sup>3</sup> model grades to the NN model grades (de-clustered composite grades) and the drill hole composite grades to identify potential local grade bias in the model. Review of all the swath plots did not identify any significant bias in the model that is material to the Resource Estimate as there was general agreement between the de-clustered composite (NN model) and the final model grades. Differences observed between the final model grades and the composite samples are attributed to the heavy clustering of samples in the higher-grade portions of the deposit and previously shown in Figure 14-5.



Figure 14-10: Longitudinal (North-South) Swath Plot of the Surluga Block Model

### 14.2.5.6 Historical Mining

Areas of historical mining from the Jubilee and Surluga mines as well as blocks inside the diabase dyke were depleted from the block model and excluded from this Mineral Resource estimate. The volume surrounding the stoping areas of the historical Jubilee Mine was entirely excluded from this Mineral Resource Estimate due to uncertainty regarding the exact location and extent of Jubilee historical mining (black), as shown in Figure 14-11.





### 14.2.5.7 Resource Classification

The Mineral Resource Estimate was classified following the CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014). Resource classifications were assigned to broad regions of the block model based on QP confidence and judgement related to drill hole spacing, geological understanding, continuity of mineralization in conjunction with data quality, density and block model representativeness. Indicated Mineral Resources were defined at a nominal 30-m drill spacing, or less, and Inferred was defined between 30-m and 80-m drill spacing. Measured Mineral Resources were not defined, due to the historical nature of a significant proportion of the available drill hole data but may have been supported in some areas if evaluated on drill hole spacing alone. Figure 14-12 outlines the locations of Indicated and Inferred Mineral resources in the Surluga Deposit.



Figure 14-12: Surluga Mineral Resource Classification (Oblique View facing Northwest)

### 14.2.5.8 Cut-Off Grade

Mineral Resources are reported at a 2.7 g/t, break-even cut-off grade, and are supported by the following economic assumptions for potential underground longhole mining:

- Gold Price: US\$1,200
- Exchange Rate: \$1.33 CAD: \$1 USD
- Gold Recovery: 90%
- Operating Expense (OPEX): CA\$125 / tonne (\$85 mining, \$25 milling, \$15 general and administration (G&A)

### 14.2.5.9 Mineral Resource Statement

Mineral Resources are not Mineral Reserves, and do not demonstrate economic viability. There is no certainty that all, or any part, of this Mineral Resource will be converted into Mineral Reserve. Inferred Mineral Resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Mineral Reserves.

Table 14-5 summarizes the Indicated and Inferred Mineral Resources for the Surluga Project, and Table 14-6 demonstrates the tonnage and grade sensitivity relative to other potential mining cut-offs. Mineral Resources were evaluated for mining continuity by reporting within a 2 g/t reporting envelope. Estimates reported below the 2.7 g/t cut-off in Table 14-6 are shown for sensitivity purposes and do not have reasonable prospects for economic extraction.

| Resource Category | Tonnes    | Au Grade (g/t) | Contained Au (Oz) |
|-------------------|-----------|----------------|-------------------|
| Indicated         | 1,202,000 | 5.31           | 205,000           |
| Total Indicated   | 1,202,000 | 5.31           | 205,000           |
| Inferred          | 2,362,000 | 5.22           | 396,000           |
| Total Inferred    | 2,362,000 | 5.22           | 396,000           |

#### Table 14-5: Surluga Mineral Resource Estimate (Effective Date May 31, 2019)

Notes:

 A 2.7 g/t cut-off is supported for potential underground longhole mining by the following economic assumptions: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$125/tonne (\$85 mining, \$25 milling, \$15 G&A). Exchange rate of \$1.33 CAD: \$1 USD

3) Tonnage estimates are rounded to the nearest 1,000 tonnes.

4) g/t – grams per tonne.

5) Ozs – troy ounces.

#### Table 14-6: Surluga Cut-off Sensitivity Comparison

| Au Cut-off  | l         | ndicated Categor                      | у       | Inferred Category |                |                        |  |  |
|-------------|-----------|---------------------------------------|---------|-------------------|----------------|------------------------|--|--|
| Grade (g/t) | Tonnes    | Au Grade (g/t) Contained Gold<br>(Oz) |         | Tonnes            | Au Grade (g/t) | Contained Gold<br>(Oz) |  |  |
| 2.0         | 1,654,000 | 4.50                                  | 239,000 | 3,533,000         | 4.26           | 484,000                |  |  |
| 2.5         | 1,323,000 | 5.06                                  | 215,000 | 2,666,000         | 4.92           | 422,000                |  |  |
| 2.7         | 1,202,000 | 5.31                                  | 205,000 | 2,362,000         | 5.22           | 396,000                |  |  |
| 3.0         | 1,043,000 | 5.68                                  | 191,000 | 1,981,000         | 5.67           | 361,000                |  |  |
| 3.5         | 829,000   | 6.31                                  | 168,000 | 1,507,000         | 6.44           | 312,000                |  |  |
| 4.0         | 669,000   | 6.93                                  | 149,000 | 1,175,000         | 7.21           | 272,000                |  |  |

Notes:

1) Official Mineral Resource estimate reported at 2.7 g/t (highlighted in green).

2) All Au cut-offs reported from within a 2-g/t envelope.

3) Estimates listed below 2.7 g/t are shown for sensitivity purposes and do not have reasonable prospects for economic extraction

4) Tonnage estimates are rounded to the nearest 1,000 tonnes.

5) g/t – grams per tonne.

6) Ozs – troy ounces.

<sup>1)</sup> All Mineral Resources reported at a 2.7 g/t Au cut-off from within a 2-g/t envelope.

# 14.3 Minto Mine South Deposit

The following summary of the Minto Mine South Mineral Resource estimate has been extracted in its entirety from the 2018 Technical Report, titled "National Instrument 43-101 Initial Technical Report for the Minto Mine South Property; Report Effective Date: December 31, 2018." The QP confirms there has been no material changes related to the Minto Mine South Mineral Resource estimate since the time of initial disclosure.

#### 14.3.1 Drill hole Data

Red Pine provided (in Microsoft Excel<sup>™</sup> files) diamond drill hole data consisting of geological descriptions, gold assays and density measurements. These files were imported into Datamine and verified as described below.

#### 14.3.1.1 Diamond Drill Holes

The drill hole database consisting of 2,253 drill holes totalling 181,792 m of core and 74,572 gold assays was made available for modelling on October 2, 2018. This database covers a volume that includes the Jubilee deposit as well as the Minto South deposit.

For the purposes of modelling, a subset of the full data was selected between 667,420 m and 670,145 m Easting, 5,314,800 m and 5,315,900 m Northing, and -475 m and 380-m Elevation. Within this volume, the database, includes 276 drill holes totalling 49,627 m of core and 18,560 gold assays. Historical (legacy) data consisted of approximately 11% of the database.

The database was analyzed for interval errors and out of range values and was reviewed in 3D space to validate the hole locations and de-surveyed hole traces. A minor number of interval issues were identified and resolved, several down-hole surveys were updated, and one collar location was corrected. The final date for the drill hole database was November 2, 2018.

The drill hole data is supported by a QA/QC process as described previously in Item 11.0 as well as independent sample verification and check logging as summarized in Item 12.0. The QP has not identified any material flaws in the drill hole data or data collection procedures. Data collection procedures were found to be consistent with CIM best practice guidelines. The drill hole database has been determined by the QP to be of suitable quality to support the 2018 resource estimate.

#### 14.3.1.2 Density Measurements

A total of 292 density measurements (from 82 drill holes) were provided from onsite drill core measurements in the Minto South volume of interest. Of these only samples from 2 drill holes pre-date 2017. The distribution of samples used for density measurement relative to the Shear Zone mineralization envelope was reviewed by the QP and found to be reasonably representative of the full deposit.

Measurements were taken from 10-cm samples from NQ and HQ sized core using the weight in air versus the weight in water method (Archimedes) based on the following formula:

 $SG = \frac{Sample \ Weight \ in \ Air}{Sample \ Weight \ in \ Air - Sample \ Weight \ in \ Water}$ 

A full description of the density measurement process is provided in Item 11.0.

Histogram for SG 25 Total Samples 292 Minimum 2.63 : Maximum 3.43 : Mean 2.77 Variance 0.01 Geometric Mean 2.77 50th Percentile 2.77 20 15 Freque 10 F 0+ 2.5 26 31 32 33 35 2.8 29 SG

The (length-weighted) histogram of density (SG) measurements is shown in Figure 14-13. A mean density value of 2.77 t/m<sup>3</sup> was used for tonnage calculations.

#### Figure 14-13: Histogram of Density Measurements

## 14.3.2 Mineralization/Geology Domaining

Red Pine provided (in DXF files) two mineralization envelopes consisting of a broad Shear Zone and a Vein Zone and an envelope of a Diabase Dyke cross-cutting the mineralization. The Shear Zone and a Vein Zone envelopes were created by Leapfrog software (Leapfrog). The Shear Zone domain was created using the geological boundaries of the Wawa Gold Shear Zone defined as a geological domain with a continuous penetrative tectonic foliation. The Vein Domain was created by constraining within the Minto Mine Shear zone a geological domain where quartz veining prevails and where most of the grade of the intersection is contained. The vein domain typically consisted of one coherent shear vein although in some drill holes the vein splayed in parallel shear veins separated by narrow domains of host rocks. A minimum width of 2 m was employed for the vein domain to partially reflect the potential SMU. The diabase dyke envelope was created by Leapfrog using lithology Diabase Minto as a control. The three envelopes were imported into Datamine and verified as solids (i.e., they can be used to select drill hole data and create blocks). The QP reviewed these domain boundaries and confirmed that they were representative of the Minto mineralization.

The mineralization envelopes were then trimmed to create a boundary perimeter that was generally 40 m from the nearest drill holes, apart from areas closer to the topographic surface where it is reduced to 20 m (see Figure 14-14).

The Shear Zone and Vein Zone envelopes were created independently but based on the controls used the Shear Zone should fully enclose the Vein Zone. Some instances were noted where the Vein Zone extended slightly outside the Shear Zone, but the volumes involved were very small and not material. Most of the vertices on the envelope meshes were "snapped" to drill hole sample endpoints but in some cases where they were not, and no material volume discrepancies were identified.

For the purposes of modelling, the Vein Zone supersedes the Shear Zone, and the Diabase Dyke supersedes both mineralization zones.



Figure 14-14: Shear Zone (green), Vein Zone (red), and Diabase Dyke (blue) Envelopes

# 14.3.3 Exploratory Data Analysis (EDA)

Analysis was conducted on the drill hole data selected within each mineralization envelope to determine the nature of the Au grade distribution and the identification of high-grade outlier samples. A combination of descriptive statistics, histograms, probability plots and XY scatter plots were used to analyze the grade population data. The findings of the EDA analysis were used to help define modelling procedures and parameters used in the resource estimate as further described in this section.

Table 14-7 provides a summary of the Au statistics for the raw sample populations captured from within each mineralization envelope (domain).

| Domain         | No. of<br>Holes | No. of<br>Interval<br>S | Total<br>Length of<br>Samples | No. Un-<br>assayed<br>Intervals | No. of<br>Samples | Minimum<br>(g/t) | Maximum<br>(g/t) | Mean<br>(g/t) | Std<br>Deviation<br>(g/t) | Coefficient<br>of Variation<br>(g/t) |
|----------------|-----------------|-------------------------|-------------------------------|---------------------------------|-------------------|------------------|------------------|---------------|---------------------------|--------------------------------------|
| Shear (Zone 1) | 108             | 721                     | 840                           | 35                              | 686               | 0.00             | 13.40            | 0.13          | 0.54                      | 4.32                                 |
| Vein (Zone 2)  | 110             | 494                     | 444                           | 19                              | 475               | 0.00             | 51.00            | 2.46          | 6.30                      | 2.56                                 |

#### Table 14-7: Au Statistics of Raw Data Captured within the Mineralization Envelopes

Notes: The total sample length includes un-assayed sample intervals. Sample statistics weighted by length.

The un-assayed sample intervals were examined, and all were concluded to be barren material and the Au grade was set to zero, except for intervals in two drill holes (SD-17-80 and SD-17-83), which are known to have passed through cavities from previous underground mining. Table 14-8 provides a summary of the Au statistics for the verified sample populations captured from within each mineralization envelope (domain).

#### Table 14-8: Au Statistics of Verified Data Captured within the Mineralization Envelopes

| Domain         | No. of<br>Holes | No. of<br>Interval<br>s | Total Length<br>of Samples<br>(m) | No. Un-<br>assayed<br>Intervals | No. of<br>Samples | Minimum<br>(g/t) | Maximum<br>(g/t) | Mean<br>(g/t) | Std<br>Deviatio<br>n (g/t) | Coefficient<br>of<br>Variation<br>(g/t) |
|----------------|-----------------|-------------------------|-----------------------------------|---------------------------------|-------------------|------------------|------------------|---------------|----------------------------|-----------------------------------------|
| Shear (Zone 1) | 108             | 721                     | 840                               | 0                               | 721               | 0.00             | 13.40            | 0.10          | 0.49                       | 4.82                                    |
| Vein (Zone 2)  | 110             | 494                     | 444                               | 2                               | 492               | 0.00             | 51.00            | 2.33          | 6.15                       | 2.64                                    |

Note: Sample statistics weighted by length.

Figure 14-15 and Figure 14-16 show the Au histograms for verified sample data captured within the Shear (Zone 1) and Vein (Zone 2) mineralization, respectively.



Figure 14-15: Au Histogram of Verified Sample Data within the Shear (Zone 1)



Figure 14-16: Au Histogram of Verified Sample Data within the Vein (Zone 2)

Figure 14-17 shows the cumulative probability distribution for the Vein (Zone 2) mineralization. Figure 14-18 shows the scatterplot of length versus Au grade for the Vein (Zone 2) mineralization. The red line represents the capping level chosen to top-cut Au grades.



Figure 14-17: Au Cumulative Probability Distribution of the Vein (Zone 2)



#### Figure 14-18: Scatterplot of Length versus Au Grade for the Vein (Zone 2)

The Au population in the Shear (Zone 1) has a mean value of 0.13 g/t and standard deviation of 0.54. The high standard deviation is attributed to a single sample at 13.4 g/t. Approximately 76% of samples were below 0.05 g/t, with only one sample above 5.0 g/t. It was recognized that the single high-grade sample was probably part of a secondary vein running parallel to the primary vein and potentially connected to it at some point, but there were insufficient drill holes in the area to domain it separately. Its inclusion in the Shear (Zone 1) was not considered material to the overall resource estimation.

The Au population in the Vein (Zone 2) has a mean value of 2.46 g/t and standard deviation of 6.30. Approximately 36% of samples were below 0.05 g/t and 14% above 5.0 g/t. The large percentage of sub 0.05 g/t material was recognized as a natural consequence of producing a smooth continuous mineralization envelope.

The cumulative probability distribution for the Vein (Zone 2) mineralization showed an inflection point around 35 g/t. Only 7 samples exceed 35 g/t, ranging from 35.1 to 51 g/t with sample lengths ranging from 0.61 to 1.12 m.

### 14.3.4 Compositing and Capping

Compositing of samples is a technique used to give each sample a relatively equal length to reduce the potential for estimation bias due to uneven sample lengths. The sample data was found to have a wide range of sample lengths due to variable widths of the Vein. A histogram of sample length was generated to determine the most common sample length used (mode), as illustrated in Figure 14-19.



Figure 14-19: Histogram of Raw Sample Length (m) in the Combined Shear and Vein Zones
Samples captured within the mineralization envelopes were composited to a mean length of 1.0 m based on the observed modal distribution of sample lengths. An option to use a variable composite length was chosen to prevent the potential loss of sample data and reduce the potential for grade bias due the possible creation of short, and potentially high-grade composites that are generally formed along the contacts when using a fixed length. Composites were created independently for each mineralization envelope with no overlaps along boundaries. A histogram of composite length was used to confirm that the compositing was completed as expected. It displays a normal distribution around the 1.0 m composite length, as shown in Figure 14-20.



Figure 14-20: Histogram of Composite Length (m) in the Combined Shear and Vein Zones

The composite samples were validated statistically to ensure there was no loss of data or material change to the mean grade of each sample population. Figure 14-21 and Figure 14-22 show the Au histograms for composites within the Shear (Zone 1) and Vein (Zone 2) mineralization, respectively.



Figure 14-21: Au Histogram of Composites within the Shear (Zone 1)



Figure 14-22: Au Histogram of Composites within the Vein (Zone 2)

Based on the inflection point around 35 g/t noted in the cumulative probability distribution of verified captured data within the Vein (Zone 2) mineralization, the composites were examined and only 4 exceed 35 g/t, ranging from 35.1 to 41.5 g/t. Based on the spatial locations of these composites and the lack of continuity of higher-grade material, they were capped to 35 g/t.

The impact of the EDA on the data to be used for resource estimation is summarized in Table 14-9.

|                | Raw Captured Samples |                    |                        | Verified C    | Verified Captured Samples |                     |               | Composites         |                        |               | Composites Capped at 35 g/t |                     |  |
|----------------|----------------------|--------------------|------------------------|---------------|---------------------------|---------------------|---------------|--------------------|------------------------|---------------|-----------------------------|---------------------|--|
| Domain         | Mean<br>(g/t)        | Std. Dev.<br>(g/t) | Coef.<br>Var.<br>(g/t) | Mean<br>(g/t) | Std.<br>Dev.<br>(g/t)     | Coef.<br>Var. (g/t) | Mean<br>(g/t) | Std. Dev.<br>(g/t) | Coef.<br>Var.<br>(g/t) | Mean<br>(g/t) | Std.<br>Dev.<br>(g/t)       | Coef.<br>Var. (g/t) |  |
| Shear (Zone 1) | 0.13                 | 0.54               | 4.33                   | 0.10          | 0.49                      | 4.82                | 0.10          | 0.42               | 4.06                   | 0.10          | 0.42                        | 4.06                |  |
| Vein (Zone 2)  | 2.46                 | 6.28               | 2.56                   | 2.33          | 6.15                      | 2.64                | 2.31          | 5.31               | 2.30                   | 2.29          | 5.17                        | 2.26                |  |

Table 14-9: Summary of Au Statistics during the EDA Process

# 14.3.5 Block Model and Resource Estimation

# 14.3.5.1 Assessment of Spatial Grade Continuity

Experimental grade variograms were generated from the composite sample data in order to determine approximate search ellipse dimensions and orientations. Since ID<sup>3</sup> was chosen for the final interpolation, the variogram models only influence the search ellipse volume (sample neighbourhood) and anisotropy (differences in search distances along each axis) and were not used to assign estimation weights to the samples.

A set of two structure spherical variogram models were fitted to the experimental variogram data in the interpreted, down-plunge direction which represents the direction of greatest grade continuity based on the available grade and structural information. An example of the Au variogram model for the major axis of the down-plunge direction is provided in Figure 14-23. Models for the semi-major and minor axes were inconclusive and not considered to determine sample search distances.



Figure 14-23: Directional Variogram Model in the Down-plunge Direction

The down-plunge/strike and down-dip directions of the mineralization were interpreted to be the directions of greatest grade continuity. Half the second structure range of the down-plunge axis was used as the basis to define the search ellipse dimension along this axis. The search dimensions selected for the other axis' were defined by the QP based on general anisotropies observed from the data as a reasonable variogram model could not be determined. Search distances are summarized in Table 14-11.

#### 14.3.5.2 Block Model Definition

The volume definition for the Minto South block model is summarized in Table 14-10. Block shape and size is typically a function of the geometry of the deposit, density of sample data, and expected smallest mining unit (SMU). On this basis, a parent block size of 2 m (E-W) by 2 m (N-S) by 2 m (Elevation) was chosen.

| Direction | Minimum   | Maximum   | Block<br>Size | No.<br>Blocks |
|-----------|-----------|-----------|---------------|---------------|
| Easting   | 668,050   | 668,750   | 2             | 350           |
| Northing  | 5,314,850 | 5,315,800 | 2             | 475           |
| Elevation | 0         | 400       | 2             | 200           |

 Table 14-10: Block Model Volume Definition

The mineralization envelopes were filled with blocks using the parameters described in Table 14-10 Block volumes were then compared to the mineral zone volumes to confirm there were no errors during the process. Block volumes for all zones were found to be within reasonable tolerance limits of the mineralization envelope volumes.

#### 14.3.5.3 Interpolation Methods

Inverse Distance cubed (ID<sup>3</sup>) was the grade interpolation method chosen as the basis of the 2018 resource estimate. This method assigns estimation weights to the samples within the search volume relative to the distance of the sample data from the centre of the block. The closer the sample, the higher the weights as described in the following formula where p is defined to the power of 3.

$$\hat{v_1} = \frac{\sum_{i=1}^{n} \frac{1}{d_i^p} v_i}{\sum_{i=1}^{n} \frac{1}{d_i^p}}$$

ID<sup>3</sup> was chosen by the QP over ID<sup>2</sup> and OK to better control the smoothing of grades, putting more weight on the samples closer to the block, due to the variable and nuggety nature of the mineralization. Nearest Neighbour (NN), ID<sup>2</sup> and OK were all estimated for global comparison and validation purposes, but not used for final resource reporting.

#### 14.3.5.4 Search Strategy

A dynamic search orientation was used in the grade estimation process to account for variable orientations of mineralization. General search orientations, defined by dip and dip direction, were estimated into the blocks based on the trends implicit to the mineralization envelopes. A 30° rake to the South was applied based on geological understanding of structural and mineralization trends, supported by the assessment of spatial grade continuity described in Item 14.3.6.1. Figure 14-24 shows an example of dynamic anisotropic search volume control at the South end of the Vein Zone mineralization.



Note: The Vein Zone is red and search ellipses are magenta.

Figure 14-24: Example of Dynamic Anisotropic Search Volume Control

A total of 3 nested, anisotropic searches were used for both the Shear (Zone 1) and Vein (Zone 2). The search radii and sample controls used are summarized in Table 14-11.

Search strategies for each domain used an elliptical search with a minimum of 6 samples and a maximum of 12 samples from a minimum of 2 drill holes in the first, a second search pass with a minimum of 5 and maximum of 8 samples from a minimum of 2 drill holes and a third search with a minimum of 2 and maximum of 8 samples from a minimum of 1 drill hole.

| Pass   | Along Strike<br>Search<br>Radius | Down Dip<br>Search<br>Radius | Across Strike<br>(thickness)<br>Search Radius | Min. No. of<br>Samples | Max. No. of<br>Samples | Max. No.<br>Samples From<br>Each Hole | Min No.<br>Holes |
|--------|----------------------------------|------------------------------|-----------------------------------------------|------------------------|------------------------|---------------------------------------|------------------|
| Pass 1 | 60                               | 40                           | 6                                             | 6                      | 12                     | 4                                     | 2                |
| Pass 2 | 120                              | 80                           | 12                                            | 5                      | 8                      | 4                                     | 2                |
| Pass 3 | 180                              | 120                          | 18                                            | 2                      | 8                      | 4                                     | 1                |

Table 14-11: Search Volume Controls used for Au Grade Estimation

#### 14.3.5.5 Outlier Controls

Composites that were capped at 35 g/t (see Item 14.3.5) were restricted to influencing grade estimation within the first search volume pass only, as an additional means of mitigating the spread of high-grade values and producing a level of continuity in higher-grade material that is unsupported.

#### 14.3.5.6 Cross-Cutting Diabase Dyke

Blocks lying inside the cross-cutting Diabase Dyke were removed from the model as the dyke was emplaced post mineralization and assumed to be barren.

#### 14.3.5.7 Model Validation

The block model validation process included visual comparisons between block estimates and composite grades in plan, section, and 3D along with a global comparison of mean grades and swath plots. Block estimates were visually compared to the drill hole composite data in both the Shear and Vein to check agreement. No material grade bias issues were identified, and the block grades compared well to the composite data as demonstrated in Figure 14-25, Figure 14-26, and Figure 14-27.



Figure 14-25: Example Cross-Section of Au Grade Distribution in the Block Model Relative to the Drill Hole Composites in Both the Vein and Shear Zones, East-West Section Facing North (5,315,460 N)



Figure 14-26: Au Grade Distribution of Composite Samples in the Vein Zone



Figure 14-27: Au Grade Distribution in the Block Model of the Vein Zone

Global statistical comparisons between the composite samples, NN estimates, ID<sup>2</sup> estimates and the final estimates (ID<sup>3</sup>) for the Shear (Zone 1) and Vein (Zone 2) were compared to assess global bias, where the NN model estimates represent de-clustered composite data. Clustering of the drill hole data can result in differences between the global means of the composites and NN estimates. Similar global means of the NN and ID<sup>3</sup> estimates indicate that there is no global grade bias in the model. The results summarized in Table 14-12 indicate that no material global bias was found in the Vein component of block model. The Shear does show some global bias due to the impact of a single high-grade sample. The bias identified in the broad shear zone is not material to the Mineral Resource estimate due to the low-grade nature of the zone.

| Strat Unit     | Composite<br>Mean (g/t) | NN<br>Mean<br>(g/t) | ID <sup>2</sup><br>Mean (g/t) | ID <sup>3</sup><br>Mean<br>(g/t) | Relative<br>Difference (%) |
|----------------|-------------------------|---------------------|-------------------------------|----------------------------------|----------------------------|
| Shear (Zone 1) | 0.102                   | 0.131               | 0.099                         | 0.102                            | -22.0                      |
| Vein (Zone 2)  | 2.313                   | 1.953               | 2.08                          | 2.073                            | 6.1                        |

| Table 14-12: Statistical Comparisor | n of Global Mean Grades |
|-------------------------------------|-------------------------|
|-------------------------------------|-------------------------|

Note: The comparison is for all blocks in the model irrespective of classification.

Swath plots of Au grades were generated from slices throughout each zone to evaluate for local grade bias issues. Figure 14-28 provides a cross-sectional (E-W) example of the swath plots of the Vein (Zone 2). The swath plots compare the model grades to the de-clustered composite grades and the composited drill hole grades to identify potential local grade bias in the model. Review of all the swath plots did not identify any bias in the model that is material to the Resource Estimate as there was general agreement between the de-clustered composites (NN model) and the final model grades.



Figure 14-28: West-East Swath Plot of the Vein (Zone 1)

#### 14.3.5.8 Previous Mining

Previous mining was known to have occurred in the northern part of the Minto South deposit. Lateral and vertical development had been digitized and placed in the correct spatial location, but no reliable information was available for the stopes. A "blanket" envelope was created to represent the best estimate of what may have been previously mined (Figure 14-29) and material inside this envelope was not included in the Mineral Resource estimate.



Figure 14-29: Volume Extracted to Account for Previous Mining (pink, against the Shear Zone [green]) in the Northern Part of Minto South (development is magenta)

#### 14.3.5.9 Resource Classification

The Resource Estimate was classified by following the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Definition Standards for Mineral Resources and Mineral Reserves (May 2014). Resource classifications were assigned to broad regions of the block model based on QP confidence and judgement related to geological understanding, continuity of mineralization in conjunction with data quality, density, and block model representativeness.

One of the contributing considerations in the classification was the distribution of the mean distance to the closest three drill holes (Figure 14-30).



Figure 14-30: Distribution of Mean Distance to Closest Three Drill Holes

For the volume of Mineral Resources in the Indicated category, the mean drill hole spacing to the closest three drill holes was approximately 25 m to 30 m or less, where geology and grade continuity were reasonably understood and represented in the model (Figure 14-31). All other volumes were in the Inferred category.



Figure 14-31: Resource Classification (Indicated is magenta, Inferred is green)

#### 14.3.5.10 Cut-Off Grade

The QP has selected a 3.5 g/t break-even cut-off grade for the reporting of Mineral Resource estimates, based on the following economic assumptions, for potential underground cut-and-fill mining:

- Gold Price: US\$1,200
- Exchange Rate: \$1.33 CAD: \$1 USD
- Mill Recovery: 90%
- Operating Expense (OPEX): CA\$160/tonne (\$120 Mining, \$25 Milling, \$15 G&A)

#### 14.3.5.11 Mineral Resource Statement

The Mineral Resource estimate for the Minto South Project is disclosed in accordance with NI 43-101 and has been estimated following the CIM Estimation of Mineral Resource and Mineral Reserves Best Practices guidelines.

Mineral resources are not mineral reserves and do not necessarily demonstrate economic viability. There is no certainty that all or any part of this mineral resource will be converted into mineral reserve.

# Inferred Mineral Resources are too speculative geologically to have economic considerations applied to them to enable them to be categorized as mineral reserves.

The base case Mineral Resource estimate is reported at a cut-off of 3.5 g/t Au (Table 14-13) while other cut-offs are provided to demonstrate tonnage and grade sensitivities (Table 14-14). The Resource estimate excludes mineralization within previously mining areas.

| Table 17-15, Willie South Willeral Resource Estimate (Ellective Date Noveliber 7, 201 |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Resource Category | Tonnes  | Au Grade<br>(g/t) | Contained Au (Oz) |
|-------------------|---------|-------------------|-------------------|
| Indicated         | 105,000 | 7.5               | 25,000            |
| Total Indicated   | 105,000 | 7.5               | 25,000            |
| Inferred          | 354,000 | 6.6               | 75,000            |
| Total Inferred    | 354,000 | 6.6               | 75,000            |

Notes:

A 3.5 g/t cut-off is supported by the following economic assumptions for potential underground cut-and-fill mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$160 / tonne (\$120 mining, \$25 milling, \$15 G&A). Exchange rate of \$1.33 CAD: \$1 USD

- 3) Tonnage estimates are rounded to the nearest 1,000 tonnes.
- g/t grams per tonne.

5) Ozs – troy ounces.

<sup>1)</sup> All Mineral Resources reported at a 3.5 g/t Au cut-off.

| Au Cut-off  |         | Indicated Catego | ry                     | Inferred Category |                |                        |  |
|-------------|---------|------------------|------------------------|-------------------|----------------|------------------------|--|
| Grade (g/t) | Tonnes  | Au Grade (g/t)   | Contained Gold<br>(Oz) | Tonnes            | Au Grade (g/t) | Contained Gold<br>(Oz) |  |
| 2.5         | 142,000 | 6.30             | 29,000                 | 496,000           | 5.60           | 89,000                 |  |
| 3.0         | 123,000 | 6.90             | 27,000                 | 426,000           | 6.00           | 83,000                 |  |
| 3.5         | 105,000 | 7.50             | 25,000                 | 354,000           | 6.60           | 75,000                 |  |
| 4.0         | 92,000  | 8.00             | 24,000                 | 303,000           | 7.10           | 69,000                 |  |
| 4.5         | 81,000  | 8.50             | 22,000                 | 260,000           | 7.50           | 63,000                 |  |
| 5.0         | 71,000  | 9.10             | 21,000                 | 225,000           | 8.00           | 58,000                 |  |

| Table | 14-14. | Minto | South | Mineral  | Resource | Cut-off | Sensitivit  | v |
|-------|--------|-------|-------|----------|----------|---------|-------------|---|
| Iable | 1      |       | Journ | witterat | Nesource | out-on  | OCHISILIVIL | v |

Note: \*Base Case Scenario: Mineral Resource estimate uses a break-even economic cut-off grade of 3.5 g/t Au.

It is the QP's opinion that the Mineral Resource has reasonable prospects for economic extraction based on reasonable grade continuity at the selected economic reporting cut-off. The QP is unaware of any known environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant factors that could materially affect the Mineral Resource estimate.

# 14.4 Combined Mineral Resource Estimate for the Wawa Gold Project

The combined Mineral Resource estimate for the Project, comprising the Surluga and Minto Mine South deposits, is summarized in Table 14-15.

| Table 14-15: Wawa Project Co | mbined Mineral Resource Estimate |
|------------------------------|----------------------------------|
|------------------------------|----------------------------------|

| Deposit                   | Resource<br>Category | Tonnes    | Au Grade<br>(g/t) | Contained Au<br>(Oz) |
|---------------------------|----------------------|-----------|-------------------|----------------------|
| Surluga                   | Indicated            | 1,202,000 | 5.31              | 205,000              |
| Minto Mine South          | Indicated            | 105,000   | 7.50              | 25,000               |
| Total                     | Indicated            | 1,307,000 | 5.47              | 230,000              |
| Surluga                   | Inferred             | 2,362,000 | 5.22              | 396,000              |
| Minto Mine South Inferred |                      | 354,000   | 6.60              | 75,000               |
| Total                     | Inferred             | 2,716,000 | 5.39              | 471,000              |

Notes:

3) Surluga Mineral Resources reported at a 2.7 g/t cut-off from within a 2-g/t envelope. The 2.7 g/t cut-off is supported by the following economic assumptions for potential underground longhole mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$125 / tonne (\$85 mining, \$25 milling, \$15 G&A). Exchange rate of \$1.33 CAD: \$1 USD.

4) Minto Mineral Resources reported at a 3.5 g/t cut-off which is supported by the following economic assumptions for potential underground cut-and-fill mining: Gold Price: US\$1,200, Gold Recovery: 90%, Operating Expense (OPEX): CA\$160 / tonne (\$120 mining, \$25 milling, \$15 G&A). Exchange rate of \$1.33 CAD: \$1 USD.

5) Tonnage estimates are rounded to the nearest 1,000 tonnes.

6) g/t - grams per tonne.

7) Ozs – troy ounces.

A comparison was completed to evaluate changes between the 2015 and 2019 Mineral Resource estimates, as summarized in Table 14-16.

| 2015 Resource Estimate |                 |                   |           | 20              | 19 Resource Est   | timate                      | Changes to the Resource Estimate |             |                             |  |
|------------------------|-----------------|-------------------|-----------|-----------------|-------------------|-----------------------------|----------------------------------|-------------|-----------------------------|--|
| Category               | Tonnes<br>(000) | Au Grade<br>(g/t) | Gold (000 | Tonnes<br>(000) | Au Grade<br>(g/t) | Contained<br>Gold (000 Ozs) | Tonnes<br>(000)                  | Au<br>Grade | Contained<br>Gold (000 Ozs) |  |
| Indicated              | 0               | 0                 | 0         | 1,307           | 5.47              | 230                         | 1,307                            | 5.47        | 230                         |  |
| Inferred               | 19,824          | 1.71              | 1,088     | 2,716           | 5.39              | 471                         | -17,108                          | 3.68        | -617                        |  |

#### Table 14-16: Wawa Gold Project Mineral Resource Summary of Changes

There were significant changes to the estimation methodology between the 2015 and 2019 estimates that resulted in material differences to the stated Mineral Resource estimates, as summarized in the following list:

- 1) The deposit was evaluated as an underground project instead of an open-pit project in 2015, which resulted in the use of a 2.7 g/t cut-off rather than the 0.4 g/t cut-off used for an open-pit scenario. This resulted in a material change in the estimated tonnage and grade.
- 2) The Jubilee shear zone was re-interpreted as three individual shears rather than as a single shear, which resulted in a change in volume and grade distribution.
- 3) The footprint of the 2019 Inferred Mineral Resource was significantly reduced from 2015 to reflect the uncertainty of mineral continuity at depth between widely spaced holes.
- 4) The estimation parameters were changed to reflect the differences in mining scenarios. The block size was reduced to 2 x 2 x 2 m from 4 x 4 x 4 m and the interpolation method was changed from Ordinary Kriging (OK) to Inverse Distance Cubed (ID<sup>3</sup>). These changes have reduced the amount of grade smoothing in the model and are more representative of the scale of mineralization in the deposit.
- 5) Indicated Mineral Resources for Surluga were classified in the 2019 model based on recent confirmation drilling, the large historical sample program completed by Red Pine and other verification checks completed by the QP described in Item 12.
- 6) The Minto Mine South deposit was discovered, and the Mineral Resource was added in 2018.

# **15.0 MINERAL RESERVE ESTIMATES**

This Item 15 is not required because the [subject] Property is not an advanced property.

# **16.0 MINING METHODS**

This Item 16 is not required because the [subject] Property is not an advanced property.

# **17.0 RECOVERY METHODS**

This Item 17 is not required because the [subject] Property is not an advanced property.

# **18.0 PROJECT INFRASTRUCTURE**

This Item 18 is not required because the [subject] Property is not an advanced property.

# **19.0 MARKET STUDIES AND CONTRACTS**

This Item 18 is not required because the [subject] Property is not an advanced property.

# 20.0 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

This Item 20 is not required because the [subject] Property is not an advanced property.

# 21.0 CAPITAL AND OPERATING COSTS

This Item 21 is not required because the [subject] Property is not an advanced property.

# 22.0 ECONOMIC ANALYSIS

This Item 22 is not required because the [subject] Property is not an advanced property.

# 23.0 ADJACENT PROPERTIES

There are many historical mines adjacent to the Project as previously described in Item 6. Regionally in the Michipicoten Greenstone belt, the Island Gold Mine, and the historical Edward Mine have mineralization styles that show some similarities with the mineralized zones of the Project. In this technical report, only the historical mines with production records located in the immediate vicinity of the Project are described. There are no active gold mines or development projects in the immediate vicinity of the Project.

Kingsview Minerals is a gold exploration company that has interest in the Norwalk Property that is comprised of three unpatented mineral claims consisting of 29 units with a total area of 445 Ha situated on the southwestern edge of the Project.

#### 23.1 Historical Gold Mines

Mines with historical production records near the Project include the Mariposa, Grace-Darwin, Parkhill, Van Sickle, Cooper, Jubilee, Minto and Surluga mines. The Maripose Mine was a small and short-term operation in the early 1900s, producing 8 tonnes at 72.99 g/t gold (Sage, 1993; Rupert, 1997). The Grace-Darwin Mine was operated discontinuously between 1900 and 1940 and produced 41,302 tonnes at 13.27 g/t gold (Sage, 1993; Rupert, 1997). The Parkhill Mine was the largest operating and highest grade mine on record, producing 114,096 tonnes at 14.81 g/t gold from 1929 to 1938 (Sage, 1993; Rupert, 1997). The Van Sickle Mine was another small, short-term operation (1933 – 1936) producing 8,372 tonnes at 6.34 g/t gold (Sage, 1993; Rupert, 1997). The Cooper, Jubilee and Minto mines were all operated in the 1930s. The Cooper Mine was a small operation, produced 4,435 tonnes at 11.42 g/t gold (Sage, 1993; Rupert, 1997). The Jubilee Mine was the second largest mine producing 107,930 tonnes at 4.29 g/t gold and the Minto Mine produced 57,335 tonnes at 12.56 g/t gold (Sage, 1993; Rupert, 1997). The Surluga Mine was the last mine in operation (1964 – 1969) near the Project and produced 86,082 tonnes at 3.12 g/t gold (Sage, 1993; Rupert, 1997).

The QP has not verified the information presented in this Item and this information is not necessarily indicative of the mineralization on the property that is the subject of this Technical Report.

# 24.0 OTHER RELEVANT DATA AND INFORMATION

The QP is not aware of any additional information or explanation necessary to make the Technical Report understandable and not misleading.

# 25.0 INTERPRETATION AND CONCLUSIONS25.1 Interpretations

The Wawa Gold deposit is a shear hosted Archean lode gold deposit, located near the town of Wawa, Ontario, Canada, in the Michipicoten greenstone belt. Mineralization is primarily located within the Jubilee Shear Zone and consists of native gold and gold-bearing sulphide mineralization associated with quartz veins, and a potassic hydrothermal alteration assemblage hosted in mainly diorite. Mineralization plunges approximately 25° to the south/southwest and dips approximately 30° to the southeast. Since the previous 2021 Technical Report, Red Pine has completed surface exploration and exploration drilling. The 2021 and 2022 drill programs confirmed that the Surluga and Minto Mine deposits remains open along-strike and down-dip, along with other gold-bearing structures in the area as disclosed in the June 21, 2019, news release, titled "Red Pine Provides Comparison of 2015-2019 Block Models and Outlines Exploration Activity for the Remainder of 2019 at its Wawa Gold Project."

The current Mineral Resource estimate was evaluated using a geostatistical block modelling approach using Datamine RM software. The block model is constrained to within the Jubilee Shear Zone limits interpreted by Red Pine. Block model grades were estimated using the ID<sup>3</sup> interpolation method from the current drill hole database. ID<sup>3</sup> estimates were observed to control grade smoothing and achieved an appropriate grade-tonnage profile relative to the characteristics of the deposit. Density was assigned to the model based on mean SG values for the deposit.

# 25.2 Conclusions

#### 25.2.1 Resource Conclusions

It is the Mineral Resource QP's opinion that the information presented in this Technical Report is representative of the Project, and based on the data verification completed, concludes that the sample database is of suitable quality to provide the basis of the conclusions and recommendations reached in this Technical Report.

The QP has taken reasonable steps to make the block model and Mineral Resource estimate representative of the Red Pine data, but notes that there are risks related to the accuracy of the estimates related to the following:

- The accuracy and quality of the historical data.
- The assumptions used by the QP to prepare the data for resource estimation.
- The accuracy of the Red Pine shear zone interpretation.
- The high-grade variability and structurally complex nature of the deposit geology.
- The presence of Lamprophyre dykes that are difficult to account for in the model and are generally barren.
- The impact of outlier grade data.
- Estimation parameters used by the QP.

For these and other reasons, actual results may differ materially from these estimates.

#### 25.2.2 QA/QC Conclusions

It is the QA/QC QP's opinion that the sample preparation, security, and analytical procedures used by Red Pine are consistent with industry standard practices and that the analytical results delivered by SGS and Actlabs are sufficiently reliable to inform Mineral Resource estimation. The QP has no material concerns with the current Red Pine geological or analytical procedures used or the quality of the Red Pine data.

The QP recognizes that, as part of the previous report recommendations, Red Pine has moved the drill hole and assay data to a cloud-based database system by MXDeposit. Red Pine has also recently began a program of 1/4 core field duplicates relative to Minto style mineralization which will further aid in QA/QC controls as well as characterizing the local coarse Au grade distribution.

Previous report site visits have taken both current drilling ¼ core field duplicates and historical core reassaying as part of the verification process (see Section 12). These have provided some examples of field and umpire duplicate sampling. The QP recommends a regular program of arbitrary, duplicate samples (field, pulp, and umpire) in order to help quantify deposit variability and identify any potential laboratory bias.

#### 25.2.3 Metallurgical Conclusions

It is the Metallurgy QP's opinion that the samples used for metallurgical testing were representative of the styles of mineralization found in the Surluga and Minto Mine South deposits.

For the three samples representative of Minto mineralization, CIL cyanidation and gravity recoverable gold average of 95.4%. For the five samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization types in the Surluga Deposit, CIL cyanidation and gravity recoverable gold average of 90.3 %. The three samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit yielded a range of CIL cyanidation and gravity recoveries between 48.9% to 78.2% (average of 61.2%).

Samples representative of the main zones of mineralization in the Surluga and Minto Mine South deposits were amenable to gravity recovery and bulk sulphide flotation at the 80%-75 µm feed size. For the three samples representative of Minto mineralization, bulk sulphide flotation and gravity recoverable gold averaged 95.6%. For the five samples representative of the blends of pyrite-dominant with accessory to absent arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity recoverable gold averaged 86.6 %. For the three samples selected to specifically characterize arsenopyrite-dominant mineralization in the Surluga Deposit, bulk sulphide flotation and gravity recoverable gold averaged 93.3%.

Potential processing alternatives applicable to the Wawa Gold Project are suggested as including:

- iii) Whole ore cyanidation applying CIL, which would be applicable to materials lower than a threshold sulphide and arsenopyrite concentration which exhibited lower gold recoveries in test work.
- iv) Gravity concentration followed by sulphide flotation to a third cleaner concentrate, which would be applicable to all material types with products shipped to a third party for hydrometallurgical processing, or smelting.
- A hybrid circuit involving gravity concentration, sulphide flotation to a third cleaner concentrate for shipment to a third party for hydrometallurgical processing or smelting, and CIL on the gravity concentrate and flotation tailings. This alternative would be expected as yielding highest possible Au recovery and would be applicable to all material types.
- vi) A circuit involving gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground concentrate and gravity concentrate. This alternative would also be expected as applicable to all material types, yielding reasonably high Au recovery and would require a smaller flotation circuit, and smaller cyanidation circuit.

# 26.0 RECOMMENDATIONS

The QP recommends:

- 50,000-m drill program in two Phases to:
  - Extend the footprints of mineralization in different structures of the mineralized system and prioritizing exploration targets that are in the direct extensions of the structures hosting the deposits and within geological structures that are overlapping to adjacent with the existing deposits (Minto Mine Shear Zone, Minto B Shear Zone, Jubilee Shear Zone, Intrusion-related system + Orogenic overprint, Extensional vein systems (Surluga North, Sadowski, two unnamed vein systems) many of these mineralized structures can be tested concurrently with one ddh).
  - Increase the confidence in the resource in selected areas of the existing deposits targeting gaps in the 2 g/t shell of the Surluga Deposit constraining the 2019 resource to improve the continuity of the higher-grade core of the deposit. This can be done concurrently with the testing of certain mineralized structures located in the hanging wall and footwall of the areas to be tested in the Jubilee Shear Zone (i.e., the Minto B Shear Zone).
  - Convert some of the blocs classified as exploration potential in the 2019 resource into inferred resource one example is the area covered by the Jubilee Mine underground developments where all the blocks of the 2019 estimate are classified as exploration potential and some drilling intersections demonstrate that mineralization of significance exists. Additional targets can be concurrently tested when doing this work (i.e., drilling in the footprints of the Jubilee Mine allows the testing of the intrusion-related system to the west as well).
  - Continue the targeted validation of the historical results in the Jubilee Shear Zone where that validation work has not been completed yet - this will be done concurrently with the testing of certain mineralized structures in the HW and the FW of the Jubilee Shear Zone, and with the testing of the intrusion-related system - if guidance could be provided on areas to be tested this would help.
- Limited testing of the structures where a potential exists to find significant mineralization Jubilee Shear Zone south of Parkhill Fault, Nyman-Grace Mineralized system, Parkhill #4 Shear Zone, Sunrise-Mickelson vein systems. A field and sampling program to identify new areas on the property with potential to host significant mineralization approx 150-200K.).
- Reassess the Mineral Resource estimate on completion of the 2023 exploration program to determine if updates are required based on new exploration data, historical core sampling, changes in geological interpretation, internal trade-off studies evaluating between potential open pit and underground mining methods, and economic criteria used to support reasonable prospects for potential economic extraction.

| Recommended Work                                                                                                                                  | Estimated Cost<br>\$CAD |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Phase 1                                                                                                                                           |                         |  |
| Diamond drilling (30,000m @ 335\$/m<br>including assaying, personnel, core<br>logging facility and logistics, Resource<br>Estimation update, PEA) | \$10,050,000            |  |
| Field mapping and sampling program                                                                                                                | \$100,000               |  |
| Overhead and corporate G&A                                                                                                                        | \$875,000               |  |
| Contingency 7%                                                                                                                                    | \$710,500               |  |
| Phase 1 Costs                                                                                                                                     | \$11,735,500            |  |
| Phase 2 (Recommendations of PEA)                                                                                                                  |                         |  |
| Diamond drilling (20,000m @ 335\$/m<br>including assaying, personnel, core<br>logging facility and logistics)                                     | \$6,700,000             |  |
| Contingency 7%                                                                                                                                    | \$469,000               |  |
| Phase 2 Costs                                                                                                                                     | \$7,269,000             |  |
| Total Cost                                                                                                                                        | \$19,004,500            |  |

### 26.1 QA/QC and Database

The Site Visit QP finds that the QA/QC protocols applied on the Wawa Gold Project are consistent with industry standards. Red Pine has not in the past used field duplicates but instead relied on lab QA/QC duplicates as part of the process. Red Pine has recently revised their QA/QC procedures to include ¼ core field duplicates of Minto Style or VG mineralization. The QP suggests using a weighted average of the two assays as the official value for that sample interval.

There is poor to marginal precision with respect to verification sampling of current and historical core, which is interpreted to be the result of the presence of coarse gold and volume variance between half core and quarter core samples. The QP recommends continuing to catalogue the rescued historical core. Create a program of verification sampling in the historical core where 4%-5% of core within the resource envelope are duplicate sampled (preferably field duplicate, but as there is limited availability coarse reject is acceptable). This can be accomplished as part of an ongoing program funded by Phase 1 and 2 drilling budgets.

Future drill samples should designate one side or the other of the cut line to reduce any bias.

# 26.2 Metallurgical Recommendations

Previous metallurgical testwork during 2019 on samples with elevated arsenopyrite were not indicative of an entirely refractory sulphide. The lower cyanidation recoveries on material and concentrate containing arsenopyrite would benefit from regrinding and intense cyanidation of a flotation rougher concentrate at a finer particle size in the order of 80% passing 10 microns.

Additional metallurgical testwork should be completed on the most challenging suite of mineralization, as well as material at naturally blended grade ranges that would be expected from underground mining. The most applicable

process flowsheet would balance the trade-off between CapEx, OpEx, metal recovery, with an overriding factor, requiring a demonstrated and viable reclamation and closure plan for permitting.

A processing strategy not previously considered could involve gravity concentration, followed by sulphide flotation with approximately 15% mass pull to a rougher concentrate, with regrinding of the rougher concentrate to approximately 10 microns, followed by intense cyanidation of the reground concentrate and gravity concentrate. This alternative would be expected as applicable to all material types, yielding reasonably high and consistent Au recovery, would require a smaller flotation circuit, as well as a smaller cyanidation circuit. Following cyanide removal from the sulphide concentrate residue, this process strategy lends itself towards sub-aqueous co-disposal of the sulphidic content in the feed, under a cap of benign low sulphide flotation tailings, to mitigate long term concerns with respect to ARD generation.

Additional work is required to fully characterize the distribution of the pyrite-dominant, Minto and arsenopyritedominant mineralization types to define metallurgical domains and approximate composition of the blend of mineralization styles in the Surluga Deposit. This can be achieved with the digitization of the sulphide assemblages recorded in the historical drill logs, and diamond drilling for targeted verification of historical data and for areas of the deposit where the sulphides assemblages were not historically recorded. Modern diamond drilling will also be required for the petrographic studies of arsenopyrite-dominant mineralization identified in historical logs located in zones without modern drilling.

Once this work is completed, additional metallurgical samples representative of the ranges of blends of mineralization types in the Surluga Deposit will be tested to further define and characterize the overall metallurgical behavior of higher-grade zones of the deposit. Additional metallurgical samples of the arsenopyrite-dominant mineralization will be pursued based on the textural attributes of arsenopyrite following petrographic work. This sampling will provide a better representation of the full range of metallurgical behavior of arsenopyrite-bearing mineralization based on the variable deportment of gold to support process flowsheet definition.

| Recommended Work                                                                                                                                                                                                                                                                         | Estimated Cost<br>\$CAD |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Additional rougher flotation test work on three (3) separate composite samples representing low, medium and high As bearing material at expected nominal Au grades.                                                                                                                      | \$15,000                |
| Additional cyanidation testwork on the three (3) separate composites evaluating a rougher concentrate at 15% mass pull, reground to 80% passing 10 microns, including pre-aeration and lead nitrate addition.                                                                            | \$25,000                |
| Completion of comparative process flowsheets and testwork on the three separate composites including whole ore cyanidation, flotation to a third cleaner concentrate, and the hybrid flotation-CIL alternative to support project financial evaluations and process flowsheet selection. | \$25,000                |
| Completion of targeted TESCA TIMA (SEM) analysis to confirm the disposition and deportment of residual Au values in process residues from six (6) separate samples from testwork and the various process options.                                                                        | \$20,000                |
| Contingency 15%                                                                                                                                                                                                                                                                          | \$15,000                |
| Total Cost                                                                                                                                                                                                                                                                               | \$100,000               |

#### Table 26-2: Summary of Recommended Metallurgical Testing Program

# 27.0 REFERENCES

Adam, D. and Vachon, D., 2014, Technical Report on the Mineral Reserve and Resource Estimate as of December 31, 2013, for the Island Gold Mine, Dubreuilville, Ontario, Canada, 249 p. (available on sedar.com)

Anderson, S.D., 1998, Geophysical Report Induced Polarization Survey on the McMurray-Lastheels Townships Property, Wawa Area, Sault Ste Marie Mining Division, Ont.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE2002, 26 p.

Archibald, F., 1983a, Canbec Explorations Ltd. Proton Magnetometer Survey – Rabazo-McMurray Townships, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NW0029, p. 10-16.

Archibald, F., 1983b, V.L.F. Electromagnetic Survey, Canbec Explorations Ltd. – Rabazo-McMurray Townships, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NW0029, p. 1-9.

Archibald, F., 1996a, Summary Report, Elliot Feder Property, Northeast Part of McMurray Township & Northwest Part of Lastheels Township, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0022, 51 p.

Archibald, F., 1996b, Lawrence Melnick Property, McMurray & Chabane Townships, District of Algoma, Northern Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0026, 37 p.

Archibald, F.T., 1998, Preliminary Summary Report, Firesand Carbonatite Diamondiferous Study, Geological, Magnetics, Electromagnetics, Backhoe Bulk Testing, Lastheels & McMurray Townships, Northern Ontario, NTS-42C/2: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE2003, 95 p.

Archibald, F.T., 2004, Summary Report #4 VLF Electromagnetics-Magnetometer-Geology-Bulk Sampling-Diamond Drilling for 3814793 Canada Inc. – P.Mousseau-L. Chanbanel McMurray Lastheels Lendrum Township Groups. Wawa Area, District of Sault Ste. Marie, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE2014, 137 p.

Barrie, C.Q., 1986, Report on an Airborne Magnetic and VLF-EM Survey McMurray Township Sault Ste. Marie Mining Division, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0033, 21 p.

Bernier, S., Ronacher, E., and McKenzie, J., 2015, Independent Technical Report – Wawa Gold Project, 172 p.

Boss, C.M., Frances Group: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0039, 21 p

Boyko, W.P., 1974, Airborne Geophysical Surveys, Sault Ste. Marie – Sudbury Region, Ontario for Consolidated Morrison Explorations Ltd. Aerodat Ltd., 61 p

Bradshaw, P.M.D., 1991, Jubilee Property, Wawa, Ontario, NTS 91 N/15, 1990 Work Program, Summary Report: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0518, 54 p.

CIM, 2014, CIM Definition Standards – For Mineral Resources and Mineral Reserve: CIM Standing Committee on Reserve Definitions, May 10, 2014.

Citadel Gold Mines Inc., 1996, Diamond Drill Record: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0037, 14 p.

Crone, D., 1975, Report for Mining Claims SSM 321878 321879 321880 covering a VLF Electromagnetic Survey in McMurray Township, Wawa Area, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0082, 10 p.

Delisle, P.-C., 1991, Summary of Drill Program, Sunrise No. 1 Vein for Van Ollie Exploration Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0069, p. 9–51.

Doerksen, G., Pilotto, D., Boehnke, R., Bender, M., Aref, K., Kirkham, G., Hutchison, I. and Buter, L., 2014, Preliminary Feasibility Study Technical Report for the Magino Project, Wawa, Ontario, Canada: Independent Technical Report for Argonaut Gold Inc., 513 p. (available on sedar.com)

Drost, A., 1994, A report on the geology of mining claims SSM 1174761 and SSM 1174880, McMurray Township, Wawa area, Sault Ste. Marie Mining District: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0004, 23 p.

Drost, A., 1995, A summary of phase 1 exploration on the McMurray-Lastheels Township property of Transgold Explorations and Investment Inc., Wawa area, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0029, 102 p.

Duke, C.J., 2012, Amended technical review and mineral resource estimate for the Jubilee-Surluga property, near Wawa, Ontario, Canada: Independent Technical Report for Augustine Ventures Inc., October 15, 2012.

Dubé, B., and Gosselin, P., 2007, Greenstone-hosted quartz-carbonate vein deposits: Geological Association of Canada, Special Publication No. 5, p. 49–73.

GEM Systems Inc., 2013, Potassium GSMP-35 (Magnetometer). http://www.gemsys.ca/wp-content/uploads/2014/05/GSMP-35-Ground.pdf. 2 p.

Gignac, D.J., 1983, Report on 1982 Diamond Drill Program for Dunraine Mines Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00055, 76 p.

Gignac, D.J., 1986, Report on Magnetometer and Gradiometer Surveys on Claim SSM 481686, McMurray Township for Goldun Age – Dunraine Joint Venture, Wawa, Ontario. Precambrian Exploration and Mining Services Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0034, 15 p.

Gillis, D.J., 1984, Basal Till Survey for Pango Gold Mines Limited of the Ward Lake Property, McMurray Township, District of Algoma, Sault Ste. Marie Mining Division, Ontario, Canada: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00027, 24 p.

Goldfarb, R.J., Baker, T., Dubé, B., Groves, D.I., Hart, C.J.R. and Gosselin, P., 2005, Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes: Economic Geology 100th Anniversary Volume, p. 407–450.

Gow, N.N., 2004, Valuation and Technical Report on the Surluga Property, Wawa, Ontario: Report prepared for Citadel Gold Mines Inc. by Roscoe Potle Associates Inc., 96 p.

Gow, N.N., 2011, Technical report on the Surluga property, Wawa, Ontario, Canada: Independent Technical Report prepared by Scott Wilson Roscoe Postle Associates Inc. for Augustine Ventures Inc., February 14, 2011, 71 p.

Harper, H.G., 1981a, Dunraine Mines Ltd., Wawa Area Gold Property, McMurray Township, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00054, 167 p.

Harper, H.G., 1981b, Dunraine Mines Ltd., Wawa Area Gold Property, McMurray Township, Ontario, Progress Report: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00061, p. 1–22.

Harper, H.G., 1982, Dunraine Mines Ltd., Parkhill Mine Project, Wawa, Ontario, 1982 Program: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00061, p. 23–122.

Heather, K.B., 1986, Mineralization of the Mishibishu Greenstone Belt: Ontario Geological Survey Miscellaneous Paper 132, p. 283–291.

Helmstaedt, H., 1988, Structural observations in the Surluga and Jubilee mines, Citadel Gold Mines Inc., Wawa, Ontario: Report for Citadel Gold Mines Inc., 29 p.

Kilty, S.J., 1986, Dighem III Survey of the Wawa Area, Ontario for Citadel Gold Mines Inc. by Dighem Surveys and Processing Inc.: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0504, 72 p.

Kuryliw, C.J., 1969, Report on Geological Survey of the Property of Pango Gold Mines Limited, Township 29, Range 23, Wawa, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00037, 24 p.

Kuryliw, C.J., 1970a, Progress report on Surluga Gold Mines Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00036, 13–19 p.

Kuryliw, C.J., 1970b, Report on a Magnetic Survey of J.D.S. Bohme Properties: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0516, 12 p.

Kuryliw, C.J., 1970c, Report on a Magnetic Survey of the Property of Pango Gold Mines Limited, Township 29, Range 23, Wawa, District of Algoma, ON: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0219, 12 p.

Kuryliw, C.J., 1971b, Diamond Drilling (hole 1971#1) for Pango Gold Mines: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00088, 21p.

Kuryliw, C.J., 1972, A report on Surluga Gold Mines Ltd. gold property, Wawa, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE00036, 52–73 p.

Kuryliw, C.J., 1980, Pango Gold Mines Ltd, McMurray Township, Wawa Area, Northern Ontario, Report on a Magnetic Survey: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0077, 13 p.

Kuryliw, C.J., 1981, Northern Horizon Resources Ltd – Report on Magnetic Survey: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0524, 14 p.

Kuryliw, C.J., 1982, Report on a (sic) Electromagnetic Survey. Pango Gold Mines Ltd McMurray Township Wawa, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0057, 37 p.

Kuryliw, C.J., 1984a, Report on a VLF Electromagnetic Survey, The Monte Christo Resources Properties, McMurray Township (Wawa, Ontario) Also Known as TWP. 29, Range 23, District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0048, 47 p.

Kuryliw, C.J., 1984b, Report on Geologic Mapping, The Monte Christo Resources South Property, McMurray Township (Wawa, Ontario) District of Algoma, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0064, p. 20–56.

Lakefield Research, 1988, An Investigation of the Recovery of Gold from samples of Surluga ore submitted by Citadel Gold Mines Inc., Progress Report No. 1: Report for Citadel Gold Mines Inc., 92 p.

Leadbetter, J., 1998, Prospecting Report on Eight Claims in the Deep Lake Area, McMurray Township, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE2003, 20 p.

Leadbetter, J., 2000, 2000 Prospecting Report – Deep Lake Area Property, McMurray Township, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE1005, 20 p.

Leonard, B., 2014, Surluga Property Report: Internal Report for Red Pine Exploration Inc., 109 p.

Mackey Point Syndicate, 1933, Compilation of Several Reports: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0021, 88 p.

MacMillan, D. and Rupert, R.J., 1990, Exploration Report -- Geological Mapping in the Vicinity of the Grace-Darwin, Parkhill and Minto Mines: Report for Citadel Gold Mines Inc., 61 p.

Mihelcic, J., 2014, Report on Test IP Surveys at the Surluga Project, Wawa, Ontario. Clearview Geophysics Inc., 21 p.

Morris, H.G., 1964, The Consolidated Mining and Smelting Company of Canada, Exploration Report No. 4, Final Exploration, Surluga Gold Mines Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE9043, p. 1132–1144.

Piaza, P.E., 1984, Report on the Magnetic and VLF Interpretation for Pango Gold Mines Ltd. On the McMurray Township Claims, Wawa Area, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NW0026, p. 12-15.

Polat, A. and Kerrich, R., 2000, Archean greenstone belt magmatism and the continental growth-mantle evolution connection: constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa sub-province, Superior Province, Canada: Earth and Planetary Science Letters, v. 175, p. 41-54.

O. Reg. 454/17. Conversion of Legacy Claims. Mining Act, R.S.O. 1990, c. M. 14

Olson, Jared, R., August 22, 2019, Report on Q2 2019 Metallurgical Studies – Surluga/Minto Composite Samples MLI Job No. 4427. McClelland Laboratories, Inc., 40 p.

Osmani, I.A., 1987, Henderson Property, McMurray Township, Wawa, Ontario, Geological Report for Citadel Gold Mines Incorporated: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0028, 59 p.
Reid, R., 1990, Report on Geophysical Surveys on the Van Sickle Property of Van Ollie Explorations Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0011, p. 114-128.

Rupert, R.J., 1980a, Geological & sampling report to the directors of Golden Goose Gold Mines Ltd. on the Deep Lake mining property, Wawa, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE9036, 24 p.

Rupert, R.J., 1980b, Magnetic and VLF EM Survey, Claim No. SSM 504488, McMurray Tp, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0078, 15 p.

Rupert, R.J., 1989a, Citadel Gold Mines Inc. Report on Magnetometer Survey Block B West of Firesand River, McMurray Township, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0023, 20 p.

Rupert, R.J., 1989b, Citadel Gold Mines Inc. Report on Magnetometer Survey South Part of Block A at Deep Lake: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0021, 14 p.

Rupert, R.J., 1997, Exploration report on the Wawa area properties of Citadel Gold Mines Inc., Report for Citadel Gold Mines Inc., 51.

Rupert, R.J. and Leroy, A., 1989, Citadel Gold Mines Inc., Technical Reports OMEP Project No. OM88-7- C-254: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0220, 465 p.

Sage, R.P., 1993. Geology of Chabanel, Esquega, Lastheels and McMurray townships, District of Algoma. Ontario Geological Survey, Open File Report 5586, 462 p.

Sears, S., 1989, Report of a work program on thirty one (31) claims of the Fickle property for Allied Northern Resources Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NW0021, 37 p.

Sears, S., 1990a, Summary report and evaluation of the 1989 work programs on the Van Sickle property of Van Ollie Exploration Limited, Volume I: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0011, 1027 p.

Sears, S., 1990b, Report of a 1990 exploration program on the Fickle claim group, McMurray Township, Ontario, for Allied Northern Resources Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0014, 28 p.

Sears, S., 1990c, Progress report on a 1990 drill program on the Fickle claims of Allied Northern Resources Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0013, 23 p.

Sears, S., 1990d, Summary report on the 1990 work program (an addendum to the 1989 report) on the Van Sickle property, of Van Ollie Explorations Ltd., Part 1: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0016, 196 p.

Sears, S., 1990e, Report on a 1990 Drill Program on the Fickle Claims of Allied Northern Resources Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0025, 30 p.

Sears, S. and Gasparetto, A., 1988, Report of a work program on the Fickle property of Allied Northern Resources Ltd., Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0027, 39 p.

Sears, S. and Gasparetto, A., 1989, Report of a Work Program on Eight Claims of the Fickle Property for Allied Northern Resources Ltd., Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NW0022, 33 p.

Sherman, B., 2005, Illustrated Information to Accompany an Independent Assessment of the Mineral Exploration Potential of the Surluga Property of Citadel Gold Mines Inc., at Wawa, Ontario: Report for Citadel Gold Mines Inc., 48 p.

Smith, P.A. and Dvorak, Z., 1983, Dighem III Survey of the Wawa Area, Ontario for Northern Horizon Resource Corporation: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0505, 83 p.

Studemeister, P.A., 1983, Dunraine Property, Dunraine Mines Ltd., Wawa, Ontario, Progress Report, (various reports): Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0041, 209 p.

Studemeister, P.A., 1984, Report on the 1984 Diamond Drilling Program, Dunraine Mines Ltd.: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0046, 52 p.

Surluga Gold Mines, Annual Report 1967, Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0063, 11 p.

Sutherland, T. F. 1935. Forty-fourth annual report of the Ontario Department of Mines.

T.E. Bowman. Vol. XLIV, Part 1. p.1-175

Thomas, R.D., 1997a, Report on Heavy Mineral Sampling, Feder Claim Group, Chabanel, McMurray and Lastheels Townships, Wawa, Ontario, NTS 42C/2, 41N/15: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE2001, 63 p.

Thomas, R.D., 1997b, Report on geochemical analyses of till samples, Feder North claim group, Chabanel and McMurray Townships, Wawa, Ontario, NTS 42C/2: Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE2002, 36 p.

Tilsley, J.E., Goldun Age Resources Inc., 1986 Exploration Program, Parkhill Property, McMurray Township, Sault Ste. Marie Mining Division, Ontario: Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE9041, 98 p.

Tindale, J.L., 1970a, Report on Magnetometer Survey on Property of Pango Mines Ltd., Twsp 28 & 29, Rge 23, Wawa, District of Algoma, ON. Ontario Ministry of Northern Development and Mines Assessment Report No. 42C02SE0208, 18 p.

Tindale, J.L., 1970b, Report on Magnetometer Survey on Property of Pango Mines Ltd., Twsp 38, Rge 23, District of Algoma, ON. Ontario Ministry of Northern Development and Mines Assessment Report No. 41N15NE0008, 11 p.

Wehrle, E.A., 2020, Gold mineralization in the Archean Wawa Gold Corridor, Wawa, Ontario: Unpublished M.Sc. thesis, University of Windsor, Windsor, Canada, Electronic theses and dissertations 8490, 165p.



wsp.com